On the existence of generalized quasi-Einstein manifolds
Archivum mathematicum, Tome 47 (2011) no. 4, pp. 279-291 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.
The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.
Classification : 53C25
Keywords: quasi-Einstein manifolds; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature; manifold of quasi-constant curvature
@article{ARM_2011_47_4_a4,
     author = {De, Uday Chand and Mallick, Sahanous},
     title = {On the existence of generalized {quasi-Einstein} manifolds},
     journal = {Archivum mathematicum},
     pages = {279--291},
     year = {2011},
     volume = {47},
     number = {4},
     mrnumber = {2876950},
     zbl = {1249.53063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a4/}
}
TY  - JOUR
AU  - De, Uday Chand
AU  - Mallick, Sahanous
TI  - On the existence of generalized quasi-Einstein manifolds
JO  - Archivum mathematicum
PY  - 2011
SP  - 279
EP  - 291
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a4/
LA  - en
ID  - ARM_2011_47_4_a4
ER  - 
%0 Journal Article
%A De, Uday Chand
%A Mallick, Sahanous
%T On the existence of generalized quasi-Einstein manifolds
%J Archivum mathematicum
%D 2011
%P 279-291
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a4/
%G en
%F ARM_2011_47_4_a4
De, Uday Chand; Mallick, Sahanous. On the existence of generalized quasi-Einstein manifolds. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 279-291. http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a4/

[1] Bejan, C., Binh, T. Q.: Generalized Einstein manifolds. WSPC–Proceeding Trim Size, dga 2007, 2007, pp. 47–54.

[2] Besse, A. L.: Einstein manifolds. Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer–Verlag, Berlin, Heidelberg, New York, 1987. | MR | Zbl

[3] Blair, D. E.: Riemannian geometry of contact and symplectic manifolds. Birkhauser, Boston, 2002. | MR | Zbl

[4] Chaki, M. C.: On generalized quasi–Einstein manifolds. Publ. Math. Debrecen 58 (2001), 683–691. | MR | Zbl

[5] Chaki, M. C.: On super quasi–Einstein manifolds. Publ. Math. Debrecen 64 (2004), 481–488. | MR | Zbl

[6] Chaki, M. C., Maity, R. K.: On quasi–Einstein manifolds. Publ. Math. Debrecen 57 (2000), 297–306. | MR | Zbl

[7] Chen, B. Y.: Geometry of submanifolds. Marcel Dekker. Inc., New York, 1973. | MR | Zbl

[8] Chen, B. Y.: Geometry of submanifolds and its applications. Science University of Tokyo, 1981. | MR | Zbl

[9] Chen, B. Y., Yano, K.: Hypersurfaces of a conformally flat space. Tensor N. S. 26 (1972), 318–322. | MR | Zbl

[10] Das, Lovejoy: On generalized $p$–quasi–Einstein manifolds. preprint. | Zbl

[11] De, U. C., Gazi, A. K.: On nearly quasi–Einstein manifolds. Novi Sad J. Math. 38 (2) (2008), 115–121. | MR

[12] De, U. C., Ghosh, G. C.: On generalized quasi–Einstein manifolds. Kyungpook Math. J. 44 (2004), 607–615. | MR | Zbl

[13] De, U. C., Ghosh, G. C.: On quasi–Einstein and special quasi–Einstein manifolds. Proc. of the Int. Conf. of Mathematics and its Applications, Kuwait University, April 5–7, 2004, 2004, pp. 178–191. | MR

[14] Deszcz, R., Hotlos, M., Senturk, Z.: On curvature properties of quasi–Einstein hypersurfaces in semi–Euclidean spaces. Soochow J. Math. 27 (2001), 375–389. | MR | Zbl

[15] Mocanu, A. L.: Les variétés à courbure quasi-constante de type Vranceanu (French). rench), Proceedings of the National Conference on Geometry and Topology (1986), Univ. Bucureşti, Bucharest, 1988, Manifolds with quasiconstant curvature of Vranceanu type, pp. 163–168. | MR

[16] Muelemeester, W. De, Verstraelen, L.: Codimension 2 submanifolds with 2–quasi–umbilical normal direction. J. Korean Math. Soc. 15 (1979), 101–108.

[17] Patterson, E. M.: Some theorems on Ricci–recurrent spaces. J. London Math. Soc. 27 (1952), 2887–295. | MR | Zbl

[18] Shaikh, A. A.: On pseudo quasi–Einstein manifolds. Periodica Mathematica Hungarica 59 (2) (2009), 119–146. | DOI | MR | Zbl

[19] Tamassay, L., Binh, T. Q.: On weak symmetries of Einstein and Sasakian manifolds. Tensor N. S. 53 (1993), 140–148. | MR

[20] Vranceanu, Gh.: Lecons des Geometrie Differential. Ed. de L'Academie, vol. 4, Bucharest, 1968.

[21] Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group. J. Differential Geom. 2 (1968), 161–184. | MR | Zbl