Keywords: quasi-Einstein manifolds; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature; manifold of quasi-constant curvature
@article{ARM_2011_47_4_a4,
author = {De, Uday Chand and Mallick, Sahanous},
title = {On the existence of generalized {quasi-Einstein} manifolds},
journal = {Archivum mathematicum},
pages = {279--291},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2876950},
zbl = {1249.53063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a4/}
}
De, Uday Chand; Mallick, Sahanous. On the existence of generalized quasi-Einstein manifolds. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 279-291. http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a4/
[1] Bejan, C., Binh, T. Q.: Generalized Einstein manifolds. WSPC–Proceeding Trim Size, dga 2007, 2007, pp. 47–54.
[2] Besse, A. L.: Einstein manifolds. Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer–Verlag, Berlin, Heidelberg, New York, 1987. | MR | Zbl
[3] Blair, D. E.: Riemannian geometry of contact and symplectic manifolds. Birkhauser, Boston, 2002. | MR | Zbl
[4] Chaki, M. C.: On generalized quasi–Einstein manifolds. Publ. Math. Debrecen 58 (2001), 683–691. | MR | Zbl
[5] Chaki, M. C.: On super quasi–Einstein manifolds. Publ. Math. Debrecen 64 (2004), 481–488. | MR | Zbl
[6] Chaki, M. C., Maity, R. K.: On quasi–Einstein manifolds. Publ. Math. Debrecen 57 (2000), 297–306. | MR | Zbl
[7] Chen, B. Y.: Geometry of submanifolds. Marcel Dekker. Inc., New York, 1973. | MR | Zbl
[8] Chen, B. Y.: Geometry of submanifolds and its applications. Science University of Tokyo, 1981. | MR | Zbl
[9] Chen, B. Y., Yano, K.: Hypersurfaces of a conformally flat space. Tensor N. S. 26 (1972), 318–322. | MR | Zbl
[10] Das, Lovejoy: On generalized $p$–quasi–Einstein manifolds. preprint. | Zbl
[11] De, U. C., Gazi, A. K.: On nearly quasi–Einstein manifolds. Novi Sad J. Math. 38 (2) (2008), 115–121. | MR
[12] De, U. C., Ghosh, G. C.: On generalized quasi–Einstein manifolds. Kyungpook Math. J. 44 (2004), 607–615. | MR | Zbl
[13] De, U. C., Ghosh, G. C.: On quasi–Einstein and special quasi–Einstein manifolds. Proc. of the Int. Conf. of Mathematics and its Applications, Kuwait University, April 5–7, 2004, 2004, pp. 178–191. | MR
[14] Deszcz, R., Hotlos, M., Senturk, Z.: On curvature properties of quasi–Einstein hypersurfaces in semi–Euclidean spaces. Soochow J. Math. 27 (2001), 375–389. | MR | Zbl
[15] Mocanu, A. L.: Les variétés à courbure quasi-constante de type Vranceanu (French). rench), Proceedings of the National Conference on Geometry and Topology (1986), Univ. Bucureşti, Bucharest, 1988, Manifolds with quasiconstant curvature of Vranceanu type, pp. 163–168. | MR
[16] Muelemeester, W. De, Verstraelen, L.: Codimension 2 submanifolds with 2–quasi–umbilical normal direction. J. Korean Math. Soc. 15 (1979), 101–108.
[17] Patterson, E. M.: Some theorems on Ricci–recurrent spaces. J. London Math. Soc. 27 (1952), 2887–295. | MR | Zbl
[18] Shaikh, A. A.: On pseudo quasi–Einstein manifolds. Periodica Mathematica Hungarica 59 (2) (2009), 119–146. | DOI | MR | Zbl
[19] Tamassay, L., Binh, T. Q.: On weak symmetries of Einstein and Sasakian manifolds. Tensor N. S. 53 (1993), 140–148. | MR
[20] Vranceanu, Gh.: Lecons des Geometrie Differential. Ed. de L'Academie, vol. 4, Bucharest, 1968.
[21] Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group. J. Differential Geom. 2 (1968), 161–184. | MR | Zbl