Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators
Archivum mathematicum, Tome 47 (2011) no. 4, pp. 257-262
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let ${\mathcal{B}}({\mathcal{H}})$ be the set of all bounded linear operators acting in Hilbert space ${\mathcal{H}}$ and ${\mathcal{B}}^{+}({\mathcal{H}})$ the set of all positive selfadjoint elements of ${\mathcal{B}}({\mathcal{H}})$. The aim of this paper is to prove that for every finite sequence $(A_{i})_{i=1}^{n}$ of selfadjoint, commuting elements of ${\mathcal{B}}^{+}({\mathcal{H}})$ and every natural number $p\ge 1$, the inequality
\[ \frac{e^{p}}{p^{p}}\Big (\sum _{i=1}^{n}A_{i}^{p}\Big )\le \exp \Big (\sum _{i=1}^{n}A_{i}\Big )\,, \]
holds.
Let ${\mathcal{B}}({\mathcal{H}})$ be the set of all bounded linear operators acting in Hilbert space ${\mathcal{H}}$ and ${\mathcal{B}}^{+}({\mathcal{H}})$ the set of all positive selfadjoint elements of ${\mathcal{B}}({\mathcal{H}})$. The aim of this paper is to prove that for every finite sequence $(A_{i})_{i=1}^{n}$ of selfadjoint, commuting elements of ${\mathcal{B}}^{+}({\mathcal{H}})$ and every natural number $p\ge 1$, the inequality
\[ \frac{e^{p}}{p^{p}}\Big (\sum _{i=1}^{n}A_{i}^{p}\Big )\le \exp \Big (\sum _{i=1}^{n}A_{i}\Big )\,, \]
holds.
Classification :
47A30, 47B60
Keywords: commuting operators; positive selfadjoint operator; spectral representation
Keywords: commuting operators; positive selfadjoint operator; spectral representation
@article{ARM_2011_47_4_a2,
author = {Bendoukha, Berrabah and Bendahmane, Hafida},
title = {Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators},
journal = {Archivum mathematicum},
pages = {257--262},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2876948},
zbl = {1249.47019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a2/}
}
TY - JOUR AU - Bendoukha, Berrabah AU - Bendahmane, Hafida TI - Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators JO - Archivum mathematicum PY - 2011 SP - 257 EP - 262 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a2/ LA - en ID - ARM_2011_47_4_a2 ER -
%0 Journal Article %A Bendoukha, Berrabah %A Bendahmane, Hafida %T Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators %J Archivum mathematicum %D 2011 %P 257-262 %V 47 %N 4 %U http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a2/ %G en %F ARM_2011_47_4_a2
Bendoukha, Berrabah; Bendahmane, Hafida. Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 257-262. http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a2/
[1] Akhiezer, N. I., Glasman, I. M.: Theory of linear operators in Hilbert space. Tech. report, Vyshcha Shkola, Kharkov, 1977, English transl. Pitman (APP), 1981. | MR
[2] Belaidi, B., Farissi, A. El, Latreuch, Z.: Inequalities between sum of the powers and the exponential of sum of nonnegative sequence. RGMIA Research Collection, 11 (1), Article 6, 2008.
[3] Qi, F.: Inequalities between sum of the squares and the exponential of sum of nonnegative sequence. J. Inequal. Pure Appl. Math. 8 (3) (2007), 1–5, Art. 78. | MR
[4] Weidman, J.: Linear operators in Hilbert spaces. New York, Springer, 1980. | MR