@article{ARM_2011_47_4_a1,
author = {Rivertz, Hans Jakob},
title = {On local isometric immersions into complex and quaternionic projective spaces},
journal = {Archivum mathematicum},
pages = {251--256},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2876947},
zbl = {1249.53079},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a1/}
}
Rivertz, Hans Jakob. On local isometric immersions into complex and quaternionic projective spaces. Archivum mathematicum, Tome 47 (2011) no. 4, pp. 251-256. http://geodesic.mathdoc.fr/item/ARM_2011_47_4_a1/
[1] Agaoka, Y.: A note on local isometric imbeddings of complex projective spaces. J. Math. Kyoto Univ. 27 (3) (1987), 501–505. | MR | Zbl
[2] Agaoka, Y., Kaneda, E.: On local isometric immersions of Riemannian symmetric spaces. Tôhoku Math. J. 36 (1984), 107–140. | DOI | MR | Zbl
[3] Bourguignon, J., Karcher, H.: Curvature operators pinching estimates and geometric examples. Ann. Sci. École Norm. Sup. (4) 11 (1978), 71–92. | MR | Zbl
[4] Dajczer, M., Rodriguez, L.: On isometric immersions into complex space forms. VIII School on Differential Geometry (Portuguese) (Campinas, 1992), vol. 4, Mat. Contemp., 1993, pp. 95–98. | MR | Zbl
[5] Dajczer, M., Rodriguez, L.: On isometric immersions into complex space forms. Math. Ann. 299 (1994), 223–230. | DOI | MR | Zbl
[6] Gray, A.: A note on manifolds whose holonomy group is a subgroup of $Sp(n)\cdot Sp(1)$. Michigan Math. J. 16 (1969), 125–128. | MR
[7] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York, San Francisco and London, 1978, Ch. 4. | MR | Zbl
[8] Küpelî, D. N.: Notes on totally geodesic Hermitian subspaces of indefinite Kähler manifolds. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 43 (1) (1995), 1–7. | MR
[9] Rivertz, H. J.: On isometric and conformal immersions into Riemannian spaces. Ph.D. thesis, Department of Mathematics, University of Oslo, 1999.
[10] Tomter, P.: Isometric immersions into complex projective space. Lie groups, geometric structures and differential equations—one hundred years after Sophus Lie, vol. 37, Adv. Stud. Pure Math., 2002, pp. 367–396. | MR | Zbl
[11] Wolf, J. A.: Correction to: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math. 152 (1984), 141–152. | DOI | MR | Zbl