Induced differential forms on manifolds of functions
Archivum mathematicum, Tome 47 (2011) no. 3, pp. 201-215 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Differential forms on the Fréchet manifold $\mathcal{F}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^{p-k}(\mathcal{F}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal{F}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].
Differential forms on the Fréchet manifold $\mathcal{F}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^{p-k}(\mathcal{F}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal{F}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].
Classification : 11K11, 22C22
Keywords: manifold of functions; fiber integral; diffeomorphism group
@article{ARM_2011_47_3_a2,
     author = {Vizman, Cornelia},
     title = {Induced differential forms on manifolds of functions},
     journal = {Archivum mathematicum},
     pages = {201--215},
     year = {2011},
     volume = {47},
     number = {3},
     mrnumber = {2852381},
     zbl = {1249.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_3_a2/}
}
TY  - JOUR
AU  - Vizman, Cornelia
TI  - Induced differential forms on manifolds of functions
JO  - Archivum mathematicum
PY  - 2011
SP  - 201
EP  - 215
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_3_a2/
LA  - en
ID  - ARM_2011_47_3_a2
ER  - 
%0 Journal Article
%A Vizman, Cornelia
%T Induced differential forms on manifolds of functions
%J Archivum mathematicum
%D 2011
%P 201-215
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_3_a2/
%G en
%F ARM_2011_47_3_a2
Vizman, Cornelia. Induced differential forms on manifolds of functions. Archivum mathematicum, Tome 47 (2011) no. 3, pp. 201-215. http://geodesic.mathdoc.fr/item/ARM_2011_47_3_a2/

[1] Alekseev, A., Strobl, T.: Current algebras and differential geometry. J. High Energy Phys. 03 (2005), 14. | MR

[2] Bonelli, G., Zabzine, M.: From current algebras for $p$–branes to topological $M$–theory. J. High Energy Phys. 09 (2005), 15. | DOI | MR

[3] Brylinski, J.–L.: Loop spaces, characteristic classes and geometric quantization. vol. 107, Progr. Math., Birkhäuser, 1993. | MR | Zbl

[4] Gay–Balmaz, F., Vizman, C.: Dual pairs in fluid dynamics. Ann. Global Anal. Geom. (2011). | DOI | MR

[5] Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles. Pure and Applied Mathematics, vol. 47, Academic Press, New York–London, 1972. | MR | Zbl

[6] Haller, S., Vizman, C.: Non-linear Grassmannians as coadjoint orbits. Math. Ann. 329 (2004), 771–785. | DOI | MR

[7] Hirsch, M. W.: Differential topology. vol. 33, Springer, 1976, Grad. Texts in Math. | MR | Zbl

[8] Ismagilov, R. S.: Representations of infinite–dimensional groups. vol. 152, Ams. Math. Soc., 1996, Translations of Mathematical Monographs. | MR | Zbl

[9] Ismagilov, R. S., Losik, M., Michor, P. W.: A 2–cocycle on a group of symplectomorphisms. Moscow Math. J. 6 (2006), 307–315. | MR

[10] Kriegl, A., Michor, P. W.: The convenient setting of global analysis. vol. 53, Math. Surveys Monogr., 1997. | MR | Zbl

[11] Marsden, J. E., Ratiu, T.: Introduction to Mechanics and Symmetry. 2nd ed., Springer, 1999. | MR | Zbl

[12] Marsden, J. E., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Phys. D 7 (1983), 305–323. | DOI | MR | Zbl

[13] Michor, P. W.: Manifolds of differentiable mappings. vol. 3, Shiva Math. Series, Shiva Publishing Ltd., Nantwich, 1980. | MR | Zbl

[14] Roger, C.: Extensions centrales d’algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations. Rep. Math. Phys. 35 (1995), 225–266. | DOI | MR | Zbl

[15] Vizman, C.: Lichnerowicz cocycles and central Lie group extensions. An. Univ. Vest Timis., Ser. Mat.–Inform. 48 (1–2) (2010), 285–297. | MR | Zbl