On the oscillation of third-order quasi-linear neutral functional differential equations
Archivum mathematicum, Tome 47 (2011) no. 3, pp. 181-199 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to study asymptotic properties of the third-order quasi-linear neutral functional differential equation \begin{equation*} \big [a(t)\big ([x(t)+p(t)x(\delta (t))]^{\prime \prime }\big )^\alpha \big ]^{\prime }+q(t)x^\alpha (\tau (t))=0\,, E \end{equation*} where $\alpha >0$, $0\le p(t)\le p_0\infty $ and $\delta (t)\le t$. By using Riccati transformation, we establish some sufficient conditions which ensure that every solution of () is either oscillatory or converges to zero. These results improve some known results in the literature. Two examples are given to illustrate the main results.
The aim of this paper is to study asymptotic properties of the third-order quasi-linear neutral functional differential equation \begin{equation*} \big [a(t)\big ([x(t)+p(t)x(\delta (t))]^{\prime \prime }\big )^\alpha \big ]^{\prime }+q(t)x^\alpha (\tau (t))=0\,, E \end{equation*} where $\alpha >0$, $0\le p(t)\le p_0\infty $ and $\delta (t)\le t$. By using Riccati transformation, we establish some sufficient conditions which ensure that every solution of () is either oscillatory or converges to zero. These results improve some known results in the literature. Two examples are given to illustrate the main results.
Classification : 34C10, 34K11
Keywords: third-order; neutral functional differential equations; oscillation and asymptotic behavior
@article{ARM_2011_47_3_a1,
     author = {Thandapani, E. and Li, Tongxing},
     title = {On the oscillation of third-order quasi-linear neutral functional differential equations},
     journal = {Archivum mathematicum},
     pages = {181--199},
     year = {2011},
     volume = {47},
     number = {3},
     mrnumber = {2852380},
     zbl = {1249.34194},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_3_a1/}
}
TY  - JOUR
AU  - Thandapani, E.
AU  - Li, Tongxing
TI  - On the oscillation of third-order quasi-linear neutral functional differential equations
JO  - Archivum mathematicum
PY  - 2011
SP  - 181
EP  - 199
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_3_a1/
LA  - en
ID  - ARM_2011_47_3_a1
ER  - 
%0 Journal Article
%A Thandapani, E.
%A Li, Tongxing
%T On the oscillation of third-order quasi-linear neutral functional differential equations
%J Archivum mathematicum
%D 2011
%P 181-199
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_3_a1/
%G en
%F ARM_2011_47_3_a1
Thandapani, E.; Li, Tongxing. On the oscillation of third-order quasi-linear neutral functional differential equations. Archivum mathematicum, Tome 47 (2011) no. 3, pp. 181-199. http://geodesic.mathdoc.fr/item/ARM_2011_47_3_a1/

[1] Baculíková, B., Džurina, J.: Oscillation of third-order functional differential equations. Electron. J. Qual. Theory Differ. Equ. 43 (2010), 1–10. | MR | Zbl

[2] Baculíková, B., Džurina, J.: Oscillation of third-order neutral differential equations. Math. Comput. Modelling 52 (2010), 215–226. | DOI | MR | Zbl

[3] Baculíková, B., Džurina, J.: Oscillation of third-order nonlinear differential equations. Appl. Math. Lett. 24 (2011), 466–470. | DOI | MR | Zbl

[4] Baculíková, B., Elabbasy, E. M., Saker, S. H., Džurina, J.: Oscillation criteria for third-order nonlinear differential equations. Math. Slovaca 58 (2008), 1–20. | DOI | MR | Zbl

[5] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations. Pacific J. Math. 64 (1976), 369–385. | DOI | MR | Zbl

[6] Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E.: On the oscillation of certain thir d order nonlinear functional differential equations. Appl. Math. Comput. 202 (2008), 102–112. | DOI | MR

[7] Han, Z., Li, T., Zhang, C., Sun, S.: An oscillation criterion for third order neutral delay differential equations. J. Appl. Anal., to appear. | MR

[8] Hanan, M.: Oscillation criteria for third order differential equations. Pacific J. Math. 11 (1961), 919–944. | DOI | MR

[9] Hartman, P., Winter, A.: Linear differential and difference equations with monotone solutions. Amer. J. Math. 75 (1953), 731–743. | DOI | MR

[10] Karpuz, B., Öcalan, Ö., Öztürk, S.: Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations. Glasgow Math. J. 52 (2010), 107–114. | DOI | MR

[11] Philos, Ch. G.: Oscillation theorems for linear differential equations of second order. Arch. Math. 53 (1989), 482–492. | DOI | MR | Zbl

[12] Saker, S. H., Džurina, J.: On the oscillation of certain class of third-order nonlinear delay differential equations. Math. Bohem. 135 (2010), 225–237. | MR | Zbl

[13] Zhong, J., Ouyang, Z., Zou, S.: Oscillation criteria for a class of third-order nonlinear neutral differential equations. J. Appl. Anal. (2010), to appear.