@article{ARM_2011_47_2_a7,
author = {Stanculescu, Alexandru E.},
title = {A remark on the {Morita} theorem for operads},
journal = {Archivum mathematicum},
pages = {139--150},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2813540},
zbl = {1249.18003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a7/}
}
Stanculescu, Alexandru E. A remark on the Morita theorem for operads. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 139-150. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a7/
[1] Fresse, B.: Lie theory of formal groups over an operad. J. Algebra 202 (2) (1998), 455–511. | DOI | MR | Zbl
[2] Kapranov, M. M., Manin, Y.: Modules and Morita theorem for operads. Amer. J. Math. 123 (5) (2001), 811–838. | DOI | MR | Zbl
[3] Kelly, G. M.: On the operads of J. P. May. Represent. Theory Appl. Categ. (13) (2005), 1–13, electronic. | MR | Zbl
[4] Lam, T. Y.: Lectures on modules and rings. Graduate Texts in Mathematics ed., no. 189, Springer–Verlag, New York, 1999. | MR | Zbl
[5] Markl, M.: Operads and PROPs. Handbook of algebra ed., vol. 5, Elsevier, North–Holland, Amsterdam, 2008. | MR | Zbl
[6] Pareigis, B.: Non–additive ring and module theory. I. General theory of monoids. Publ. Math. Debrecen 24 (1–2) (1977), 189–204. | MR | Zbl
[7] Pareigis, B.: Non-additive ring and module theory. II. $C$–categories, $C$–functors and $C$–morphisms. Publ. Math. Debrecen 24 (3–4) (1977), 351–361. | MR
[8] Pareigis, B.: Non-additive ring and module theory. III. Morita equivalences. Publ. Math. Debrecen 25 (1–2) (1978), 177–186. | MR | Zbl
[9] Rezk, C.: Spaces of algebra structures and cohomology of operads. Ph.D. thesis, MIT, 1996. | MR
[10] Vitale, E. M.: Monoidal categories for Morita theory. Cahiers Topologie Géom. Différentielle Catég. 33 (1992), 331–343. | MR | Zbl