A remark on the Morita theorem for operads
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 139-150 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We extend a result of M. M. Kapranov and Y. Manin concerning the Morita theory for linear operads. We also give a cyclic operad version of their result.
We extend a result of M. M. Kapranov and Y. Manin concerning the Morita theory for linear operads. We also give a cyclic operad version of their result.
Classification : 18D50
Keywords: operads; Morita theorems
@article{ARM_2011_47_2_a7,
     author = {Stanculescu, Alexandru E.},
     title = {A remark on the {Morita} theorem for operads},
     journal = {Archivum mathematicum},
     pages = {139--150},
     year = {2011},
     volume = {47},
     number = {2},
     mrnumber = {2813540},
     zbl = {1249.18003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a7/}
}
TY  - JOUR
AU  - Stanculescu, Alexandru E.
TI  - A remark on the Morita theorem for operads
JO  - Archivum mathematicum
PY  - 2011
SP  - 139
EP  - 150
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a7/
LA  - en
ID  - ARM_2011_47_2_a7
ER  - 
%0 Journal Article
%A Stanculescu, Alexandru E.
%T A remark on the Morita theorem for operads
%J Archivum mathematicum
%D 2011
%P 139-150
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a7/
%G en
%F ARM_2011_47_2_a7
Stanculescu, Alexandru E. A remark on the Morita theorem for operads. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 139-150. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a7/

[1] Fresse, B.: Lie theory of formal groups over an operad. J. Algebra 202 (2) (1998), 455–511. | DOI | MR | Zbl

[2] Kapranov, M. M., Manin, Y.: Modules and Morita theorem for operads. Amer. J. Math. 123 (5) (2001), 811–838. | DOI | MR | Zbl

[3] Kelly, G. M.: On the operads of J. P. May. Represent. Theory Appl. Categ. (13) (2005), 1–13, electronic. | MR | Zbl

[4] Lam, T. Y.: Lectures on modules and rings. Graduate Texts in Mathematics ed., no. 189, Springer–Verlag, New York, 1999. | MR | Zbl

[5] Markl, M.: Operads and PROPs. Handbook of algebra ed., vol. 5, Elsevier, North–Holland, Amsterdam, 2008. | MR | Zbl

[6] Pareigis, B.: Non–additive ring and module theory. I. General theory of monoids. Publ. Math. Debrecen 24 (1–2) (1977), 189–204. | MR | Zbl

[7] Pareigis, B.: Non-additive ring and module theory. II. $C$–categories, $C$–functors and $C$–morphisms. Publ. Math. Debrecen 24 (3–4) (1977), 351–361. | MR

[8] Pareigis, B.: Non-additive ring and module theory. III. Morita equivalences. Publ. Math. Debrecen 25 (1–2) (1978), 177–186. | MR | Zbl

[9] Rezk, C.: Spaces of algebra structures and cohomology of operads. Ph.D. thesis, MIT, 1996. | MR

[10] Vitale, E. M.: Monoidal categories for Morita theory. Cahiers Topologie Géom. Différentielle Catég. 33 (1992), 331–343. | MR | Zbl