Natural extension of a congruence of a lattice to its lattice of convex sublattices
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 133-138
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $L$ be a lattice. In this paper, corresponding to a given congruence relation $\Theta $ of $L$, a congruence relation $\Psi _\Theta $ on $CS(L)$ is defined and it is proved that
1.
$CS(L/\Theta )$ is isomorphic to $CS(L)/\Psi _\Theta $;
2.
$L/\Theta $ and $CS(L)/\Psi _\Theta $ are in the same equational class;
3.
if $\Theta $ is representable in $L$, then so is $\Psi _\Theta $ in $CS(L)$.
Let $L$ be a lattice. In this paper, corresponding to a given congruence relation $\Theta $ of $L$, a congruence relation $\Psi _\Theta $ on $CS(L)$ is defined and it is proved that
1.
$CS(L/\Theta )$ is isomorphic to $CS(L)/\Psi _\Theta $;
2.
$L/\Theta $ and $CS(L)/\Psi _\Theta $ are in the same equational class;
3.
if $\Theta $ is representable in $L$, then so is $\Psi _\Theta $ in $CS(L)$.
Classification :
06B10, 06B20
Keywords: lattice of convex sublattices of a lattice; congruence relation; representable congruence relation
Keywords: lattice of convex sublattices of a lattice; congruence relation; representable congruence relation
@article{ARM_2011_47_2_a6,
author = {Bhatta, S. Parameshwara and Ramananda, H. S.},
title = {Natural extension of a congruence of a lattice to its lattice of convex sublattices},
journal = {Archivum mathematicum},
pages = {133--138},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2813539},
zbl = {1249.06007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a6/}
}
TY - JOUR AU - Bhatta, S. Parameshwara AU - Ramananda, H. S. TI - Natural extension of a congruence of a lattice to its lattice of convex sublattices JO - Archivum mathematicum PY - 2011 SP - 133 EP - 138 VL - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a6/ LA - en ID - ARM_2011_47_2_a6 ER -
Bhatta, S. Parameshwara; Ramananda, H. S. Natural extension of a congruence of a lattice to its lattice of convex sublattices. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 133-138. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a6/
[1] Grätzer, G.: General Lattice Theory. 2nd ed., Birkhäuser Verlag, 1998. | MR
[2] Grätzer, G.: The Congruence of a Finite Lattice, A Proof by Picture Aproach. Birkhäuser Boston, 2006. | MR
[3] Lavanya, S., Parameshwara Bhatta, S.: A new approach to the lattice of convex sublattice of a lattice. Algebra Universalis 35 (1996), 63–71. | DOI | MR
[4] Parameshwara Bhatta, S., Ramananda, H. S.: On ideals and congruence relations in trellises. Acta Math. Univ. Comenian. 2 (2010), 209–216. | MR