Keywords: space forms; $r$-th mean curvatures; $r$-stability
@article{ARM_2011_47_2_a5,
author = {de Lima, H. F. and Vel\'asquez, M. A.},
title = {A new characterization of $r$-stable hypersurfaces in space forms},
journal = {Archivum mathematicum},
pages = {119--131},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2813538},
zbl = {1249.53081},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a5/}
}
de Lima, H. F.; Velásquez, M. A. A new characterization of $r$-stable hypersurfaces in space forms. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 119-131. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a5/
[1] Alencar, H., do Carmo, M., Colares, A. G.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213 (1993), 117–131. | DOI | MR | Zbl
[2] Barbosa, J. L. M., Colares, A. G.: Stability of hypersurfaces with constant $r$-mean curvature. Ann. Global Anal. Geom. 15 (1997), 277–297. | DOI | MR | Zbl
[3] Barbosa, J. L. M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185 (3) (1984), 339–353. | DOI | MR | Zbl
[4] Barbosa, J. L. M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197 (1) (1988), 123–138. | DOI | MR | Zbl
[5] Barros, A., Sousa, P.: Compact graphs over a sphere of constant second order mean curvature. Proc. Amer. Math. Soc. 137 (2009), 3105–3114. | DOI | MR | Zbl
[6] Caminha, A.: On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds. J. Geom. Phys. 56 (2006), 1144–1174. | DOI | MR | Zbl
[7] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. | DOI | MR | Zbl
[8] de Lima, H. F.: Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space. J. Geom. Phys. 57 (2007), 967–975. | DOI | MR | Zbl
[9] He, Y., Li, H.: Stability of area-preserving variations in space forms. Ann. Global Anal. Geom. 34 (2008), 55–68. | DOI | MR | Zbl
[10] Reilly, R.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Equations 8 (1973), 465–477. | MR | Zbl
[11] Rosenberg, H.: Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117 (1993), 217–239. | MR | Zbl
[12] Xin, Y.: Minimal submanifolds and related topics. World Scientific Publishing co., Singapore, 2003. | MR | Zbl