Nonlinear stability of a quadratic functional equation with complex involution
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 111-117 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X, Y$ be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping $f : X \rightarrow Y$ satisfies \begin{eqnarray} f(x+i y)+ f(x-iy) = 2 f(x) - 2f(y) \end{eqnarray} for all $x$, $y\in X$, then the mapping $f \colon X \rightarrow Y$ satisfies $f(x+y) + f(x-y) = 2 f(x) + 2 f(y)$ for all $x$, $y \in X$. Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation () in complex Banach spaces. In this paper, we will adopt the idea of Park and Th. M. Rassias to prove the stability of a quadratic functional equation with complex involution via fixed point method.
Let $X, Y$ be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping $f : X \rightarrow Y$ satisfies \begin{eqnarray} f(x+i y)+ f(x-iy) = 2 f(x) - 2f(y) \end{eqnarray} for all $x$, $y\in X$, then the mapping $f \colon X \rightarrow Y$ satisfies $f(x+y) + f(x-y) = 2 f(x) + 2 f(y)$ for all $x$, $y \in X$. Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation () in complex Banach spaces. In this paper, we will adopt the idea of Park and Th. M. Rassias to prove the stability of a quadratic functional equation with complex involution via fixed point method.
Classification : 39B72, 47H10
Keywords: quadratic mapping; fixed point; quadratic functional equation; generalized Hyers-Ulam stability
@article{ARM_2011_47_2_a4,
     author = {Saadati, Reza and Sadeghi, Ghadir},
     title = {Nonlinear stability of a quadratic functional equation with complex involution},
     journal = {Archivum mathematicum},
     pages = {111--117},
     year = {2011},
     volume = {47},
     number = {2},
     mrnumber = {2813537},
     zbl = {1249.39031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a4/}
}
TY  - JOUR
AU  - Saadati, Reza
AU  - Sadeghi, Ghadir
TI  - Nonlinear stability of a quadratic functional equation with complex involution
JO  - Archivum mathematicum
PY  - 2011
SP  - 111
EP  - 117
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a4/
LA  - en
ID  - ARM_2011_47_2_a4
ER  - 
%0 Journal Article
%A Saadati, Reza
%A Sadeghi, Ghadir
%T Nonlinear stability of a quadratic functional equation with complex involution
%J Archivum mathematicum
%D 2011
%P 111-117
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a4/
%G en
%F ARM_2011_47_2_a4
Saadati, Reza; Sadeghi, Ghadir. Nonlinear stability of a quadratic functional equation with complex involution. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 111-117. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a4/

[1] Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4 (1) (2003), 7 pp, Art. ID 4. | MR | Zbl

[2] Cholewa, P. W.: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76–86. | DOI | MR | Zbl

[3] Czerwik, S.: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. | DOI | MR | Zbl

[4] Diaz, J., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 74 (1968), 305–309. | DOI | MR | Zbl

[5] Fauiziev, V., Sahoo, K. P.: On the stability of Jensen’s functional equation on groups. Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 31–48. | DOI | MR

[6] Găvruta, P., Găvruta, L.: A new method for the generalized Hyers–Ulam–Rassias stability. Int. J. Nonlinear Anal. Appl. 1 (2) (2010), 11–18.

[7] Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. | DOI | MR | Zbl

[8] Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables. Birkhäser, Basel, 1998. | MR | Zbl

[9] Isac, G., Rassias, Th. M.: Stability of $\psi $–additive mappings: Applications to nonlinear analysis. Internat. J. Math. Math. Sci. 19 (1996), 219–228. | DOI | MR | Zbl

[10] Jun, K., Kim, H.: On the stability of an $n$–dimensional quadratic and additive functional equation. Math. Inequal. Appl. 9 (2006), 153–165. | MR | Zbl

[11] Jung, S., Lee, Z.: A fixed point approach to the stability of quadratic functional equation with involution. Fixed Point Theory and Applications (2008), Article ID 732086 (2008). | MR | Zbl

[12] Khodaei, H., Rassias, Th. M.: Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl. 1 (1) (2010), 22–41.

[13] Mirzavaziri, M., Moslehian, M. S.: A fixed point approch to stability of quadratic equation. Bull. Brazil. Math. Soc. 37 (2006), 361–376. | DOI | MR

[14] Park, C., Rassias, Th. M.: Fixed points and generalized Hyers–Ulam stability of quadratic functional equations. J. Math. Inequal. 37 (2006), 515–528. | MR

[15] Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4 (2003), 91–96. | MR | Zbl

[16] Rassias, Th. M.: On the stability of the quadratic functional equation and its applications. Studia Univ. Babeş–Bolyai Math. XLIII (1998), 89–124. | MR | Zbl

[17] Rassias, Th. M.: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62 (1) (2000), 23–130. | DOI | MR | Zbl

[18] Skof, F.: Proprietà locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. | DOI

[19] Ulam, S. M.: Problems in Modern Mathematics. Wiley, New York, 1960. | MR