Keywords: one term difference operator; recessive system of solutions; $p$-critical operator; sub/supercritical operator
@article{ARM_2011_47_2_a3,
author = {Hasil, Petr},
title = {Criterion of $p$-criticality for one term $2n$-order difference operators},
journal = {Archivum mathematicum},
pages = {99--109},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2813536},
zbl = {1249.39001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a3/}
}
Hasil, Petr. Criterion of $p$-criticality for one term $2n$-order difference operators. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 99-109. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a3/
[1] Agarwal, R. P.: Difference equations and inequalities, theory, methods, and applications. Pure Appl. Math. (1992), M. Dekker, New York, Basel, Hong Kong. | MR | Zbl
[2] Ahlbrandt, C. D., Peterson, A. C.: Discrete Hamiltonian systems: Difference equations, continued fractions, and Riccati equations. Kluwer Academic Publishers, Boston, 1996. | MR | Zbl
[3] Bohner, M.: Linear Hamiltonian difference systems: Disconjugacy and Jacobi–type condition. J. Math. Anal. Appl. 199 (1996), 804–826. | DOI | MR
[4] Bohner, M., Došlý, O.: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707–743. | DOI | MR
[5] Bohner, M., Došlý, O., Kratz, W.: A Sturmian theorem for recessive solutions of linear Hamiltonian difference systems. Appl. Math. Lett. 12 (1999), 101–106. | DOI | MR
[6] Došlý, O.: Oscillation criteria for higher order Sturm–Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425–450. | DOI | MR
[7] Došlý, O., Hasil, P.: Critical higher order Sturm–Liouville difference operators. J. Differ. Equations Appl., to appear.
[8] Došlý, O., Komenda, J.: Conjugacy criteria and principal solutions of self–adjoint differential equations. Arch. Math. (Brno) 31 (1995), 217–238. | MR
[9] Erbe, L., Yan, P.: Qualitative properties of Hamiltonian difference systems. J. Math. Anal. Appl. 171 (1992), 334–345. | DOI | MR | Zbl
[10] Gesztesy, F., Zhao, Z.: Critical and subcritical Jacobi operators defined as Friedrichs extensions. J. Differential Equations 103 (1993), 68–93. | DOI | MR | Zbl
[11] Kratz, W.: Quadratic functionals in variational analysis and control theory. Mathematical topics, Volume 6, Akademie Verlag, Berlin, 1995. | MR | Zbl
[12] Kratz, W.: Sturm–Liouville difference equations and banded matrices. Arch. Math. (Brno) 36 (2000), 499–505. | MR | Zbl
[13] Kratz, W.: Banded matrices and difference equations. Linear Algebra Appl. 337 (2001), 1–20. | DOI | MR | Zbl