Criterion of $p$-criticality for one term $2n$-order difference operators
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 99-109 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion.
We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion.
Classification : 39A10, 39A21, 39A70, 47B25
Keywords: one term difference operator; recessive system of solutions; $p$-critical operator; sub/supercritical operator
@article{ARM_2011_47_2_a3,
     author = {Hasil, Petr},
     title = {Criterion of $p$-criticality for one term $2n$-order difference operators},
     journal = {Archivum mathematicum},
     pages = {99--109},
     year = {2011},
     volume = {47},
     number = {2},
     mrnumber = {2813536},
     zbl = {1249.39001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a3/}
}
TY  - JOUR
AU  - Hasil, Petr
TI  - Criterion of $p$-criticality for one term $2n$-order difference operators
JO  - Archivum mathematicum
PY  - 2011
SP  - 99
EP  - 109
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a3/
LA  - en
ID  - ARM_2011_47_2_a3
ER  - 
%0 Journal Article
%A Hasil, Petr
%T Criterion of $p$-criticality for one term $2n$-order difference operators
%J Archivum mathematicum
%D 2011
%P 99-109
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a3/
%G en
%F ARM_2011_47_2_a3
Hasil, Petr. Criterion of $p$-criticality for one term $2n$-order difference operators. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 99-109. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a3/

[1] Agarwal, R. P.: Difference equations and inequalities, theory, methods, and applications. Pure Appl. Math. (1992), M. Dekker, New York, Basel, Hong Kong. | MR | Zbl

[2] Ahlbrandt, C. D., Peterson, A. C.: Discrete Hamiltonian systems: Difference equations, continued fractions, and Riccati equations. Kluwer Academic Publishers, Boston, 1996. | MR | Zbl

[3] Bohner, M.: Linear Hamiltonian difference systems: Disconjugacy and Jacobi–type condition. J. Math. Anal. Appl. 199 (1996), 804–826. | DOI | MR

[4] Bohner, M., Došlý, O.: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707–743. | DOI | MR

[5] Bohner, M., Došlý, O., Kratz, W.: A Sturmian theorem for recessive solutions of linear Hamiltonian difference systems. Appl. Math. Lett. 12 (1999), 101–106. | DOI | MR

[6] Došlý, O.: Oscillation criteria for higher order Sturm–Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425–450. | DOI | MR

[7] Došlý, O., Hasil, P.: Critical higher order Sturm–Liouville difference operators. J. Differ. Equations Appl., to appear.

[8] Došlý, O., Komenda, J.: Conjugacy criteria and principal solutions of self–adjoint differential equations. Arch. Math. (Brno) 31 (1995), 217–238. | MR

[9] Erbe, L., Yan, P.: Qualitative properties of Hamiltonian difference systems. J. Math. Anal. Appl. 171 (1992), 334–345. | DOI | MR | Zbl

[10] Gesztesy, F., Zhao, Z.: Critical and subcritical Jacobi operators defined as Friedrichs extensions. J. Differential Equations 103 (1993), 68–93. | DOI | MR | Zbl

[11] Kratz, W.: Quadratic functionals in variational analysis and control theory. Mathematical topics, Volume 6, Akademie Verlag, Berlin, 1995. | MR | Zbl

[12] Kratz, W.: Sturm–Liouville difference equations and banded matrices. Arch. Math. (Brno) 36 (2000), 499–505. | MR | Zbl

[13] Kratz, W.: Banded matrices and difference equations. Linear Algebra Appl. 337 (2001), 1–20. | DOI | MR | Zbl