Keywords: minimal normal subgroups; faithful characters; strong condition on normal subgroups; Frobenius groups
@article{ARM_2011_47_2_a2,
author = {Iranmanesh, Ali and Saeidi, Amin},
title = {Finite groups with a unique nonlinear nonfaithful irreducible character},
journal = {Archivum mathematicum},
pages = {91--98},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2813535},
zbl = {1249.20009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a2/}
}
Iranmanesh, Ali; Saeidi, Amin. Finite groups with a unique nonlinear nonfaithful irreducible character. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 91-98. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a2/
[1] Berkovich, Y., Chillag, D., Herzog, M.: Finite groups in which the degrees of the nonlinear irreducible characters are distinct. Proc. Amer. Math. Soc. 115 (1992), 955–958. | DOI | MR | Zbl
[2] Di Martino, L., Tamburini, M. C.: Some remarks on the degrees of faithful irreducible representation of a finite group. Geom. Dedicata 41 (1992), 155–164. | MR
[3] Fernández–Alcober, G. A., Moretó, A.: Groups with extreme character degrees and their normal subgroups. Trans. Amer. Math. Soc. 353 (2001), 2271–2292. | DOI
[4] Gagola, S. M.: A character theoretic condition for F(G)$>$1. Comm. Algebra 133 (2005), 1369–1382. | DOI | MR | Zbl
[5] GAP Groups, Algorithms, and Programming, Version 4.4.10, 2007.
[6] Isaacs, I. M.: Character Theory of Finite Groups. Dover, New York, 1994. | MR | Zbl
[7] Loukaki, M.: On distinct character degrees. Israel J. Math. 159 (2007), 93–97. | DOI | MR | Zbl
[8] Seitz, G. M.: Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc. 19 (1968), 459–461. | DOI | MR | Zbl