Finite groups with a unique nonlinear nonfaithful irreducible character
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 91-98 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider finite groups with precisely one nonlinear nonfaithful irreducible character. We show that the groups of order 16 with nilpotency class 3 are the only $p$-groups with this property. Moreover we completely characterize the nilpotent groups with this property. Also we show that if $G$ is a group with a nontrivial center which possesses precisely one nonlinear nonfaithful irreducible character then $G$ is solvable.
In this paper, we consider finite groups with precisely one nonlinear nonfaithful irreducible character. We show that the groups of order 16 with nilpotency class 3 are the only $p$-groups with this property. Moreover we completely characterize the nilpotent groups with this property. Also we show that if $G$ is a group with a nontrivial center which possesses precisely one nonlinear nonfaithful irreducible character then $G$ is solvable.
Classification : 20C15, 20D15, 20F16
Keywords: minimal normal subgroups; faithful characters; strong condition on normal subgroups; Frobenius groups
@article{ARM_2011_47_2_a2,
     author = {Iranmanesh, Ali and Saeidi, Amin},
     title = {Finite groups with a unique nonlinear nonfaithful irreducible character},
     journal = {Archivum mathematicum},
     pages = {91--98},
     year = {2011},
     volume = {47},
     number = {2},
     mrnumber = {2813535},
     zbl = {1249.20009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a2/}
}
TY  - JOUR
AU  - Iranmanesh, Ali
AU  - Saeidi, Amin
TI  - Finite groups with a unique nonlinear nonfaithful irreducible character
JO  - Archivum mathematicum
PY  - 2011
SP  - 91
EP  - 98
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a2/
LA  - en
ID  - ARM_2011_47_2_a2
ER  - 
%0 Journal Article
%A Iranmanesh, Ali
%A Saeidi, Amin
%T Finite groups with a unique nonlinear nonfaithful irreducible character
%J Archivum mathematicum
%D 2011
%P 91-98
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a2/
%G en
%F ARM_2011_47_2_a2
Iranmanesh, Ali; Saeidi, Amin. Finite groups with a unique nonlinear nonfaithful irreducible character. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 91-98. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a2/

[1] Berkovich, Y., Chillag, D., Herzog, M.: Finite groups in which the degrees of the nonlinear irreducible characters are distinct. Proc. Amer. Math. Soc. 115 (1992), 955–958. | DOI | MR | Zbl

[2] Di Martino, L., Tamburini, M. C.: Some remarks on the degrees of faithful irreducible representation of a finite group. Geom. Dedicata 41 (1992), 155–164. | MR

[3] Fernández–Alcober, G. A., Moretó, A.: Groups with extreme character degrees and their normal subgroups. Trans. Amer. Math. Soc. 353 (2001), 2271–2292. | DOI

[4] Gagola, S. M.: A character theoretic condition for F(G)$>$1. Comm. Algebra 133 (2005), 1369–1382. | DOI | MR | Zbl

[5] GAP Groups, Algorithms, and Programming, Version 4.4.10, 2007.

[6] Isaacs, I. M.: Character Theory of Finite Groups. Dover, New York, 1994. | MR | Zbl

[7] Loukaki, M.: On distinct character degrees. Israel J. Math. 159 (2007), 93–97. | DOI | MR | Zbl

[8] Seitz, G. M.: Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc. 19 (1968), 459–461. | DOI | MR | Zbl