Keywords: Peano existence theorem; non-Lipschitz nonlinearity; non-uniqueness; IVP; ODE; Cauchy problem
@article{ARM_2011_47_2_a1,
author = {Zubelevich, Oleg},
title = {A note on existence theorem of {Peano}},
journal = {Archivum mathematicum},
pages = {83--89},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2813534},
zbl = {1249.34023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a1/}
}
Zubelevich, Oleg. A note on existence theorem of Peano. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 83-89. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a1/
[1] Bownds, M.: A uniqueness theorem for non-Lipschitzian systems of ordinary differential equations. Funkcial. Ekvac. 13 (1970), 61–65. | MR
[2] Brauer, F., Sternberg, S.: Local uniqueness, existence in the large, and the convergence of successive approximations. Amer. J. Math. 80 (1958), 421–430. | DOI | MR | Zbl
[3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw–Hill Book Company, 1955. | MR | Zbl
[4] Engelking, R.: General Topology. PWN–Polish Scientific Publishers, Warsaw, 1977. | MR | Zbl
[5] Folland, G. B.: Real analysis. Modern techniques and their applications. Second edition. Wiley-Interscience Publication, John Wiley and Sons, 1999. | MR
[6] Godunov, A. N.: Peano’s theorem in Banach spaces. Funct. Anal. Appl. 9 (1975), 53–55. | DOI | Zbl
[7] Hartman, P.: Ordinary Differential Equations. New York-London-Sydney, John Wiley and Sons, 1964. | MR | Zbl
[8] Kamke, E.: Differentialgleichungen reeler Functionen. Akademische Verlagsgesellschaft, Geest and Portig K.–G., 1930.
[9] Kato, S.: On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces. Funkcial. Ekvac. 19 (3) (1976), 239–245. | MR | Zbl
[10] Krasnoselskii, M. A., Krein, S. G.: On a class of uniqueness theorems for the equations $y^{\prime }=f(x,y)$. Uspekhi Mat. Nauk (N.S.) 11 no. 1 (67) (1956), 209–213. | MR
[11] Levy, P.: Provessus stochastiques et mouvement Brownien. Gauthier–Villars, Paris, 1948. | MR
[12] Ramankutty, P.: Kamke’s uniqueness theorem. J. London Math. Soc. (2) 22 (1982), 110–116. | MR
[13] Schwartz, L.: Analyse mathèmatique. Herman, 1967. | Zbl
[14] Sobolevskii, S. L.: Systems of differential equations with nonunique solutions of the Cauchy problem. Differential Equations 38 (3) (2002), 451–452. | DOI | MR
[15] Szep, A.: Existence theorem for weak solutions for ordinary differential equations in reflexive Banach spaces. Studia Sci. Math. Hungar. 6 (1971), 197–203. | MR
[16] Yorke, J. A.: A continuous differential equation in Hilbert space without existence. Funkcial. Ekvac. 13 (1970), 19–21. | MR | Zbl