A note on existence theorem of Peano
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 83-89
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An ODE with non-Lipschitz right hand side has been considered. A family of solutions with $L^p$-dependence of the initial data has been obtained. A special set of initial data has been constructed. In this set the family is continuous. The measure of this set has been estimated.
An ODE with non-Lipschitz right hand side has been considered. A family of solutions with $L^p$-dependence of the initial data has been obtained. A special set of initial data has been constructed. In this set the family is continuous. The measure of this set has been estimated.
Classification : 34A12
Keywords: Peano existence theorem; non-Lipschitz nonlinearity; non-uniqueness; IVP; ODE; Cauchy problem
@article{ARM_2011_47_2_a1,
     author = {Zubelevich, Oleg},
     title = {A note on existence theorem of {Peano}},
     journal = {Archivum mathematicum},
     pages = {83--89},
     year = {2011},
     volume = {47},
     number = {2},
     mrnumber = {2813534},
     zbl = {1249.34023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a1/}
}
TY  - JOUR
AU  - Zubelevich, Oleg
TI  - A note on existence theorem of Peano
JO  - Archivum mathematicum
PY  - 2011
SP  - 83
EP  - 89
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a1/
LA  - en
ID  - ARM_2011_47_2_a1
ER  - 
%0 Journal Article
%A Zubelevich, Oleg
%T A note on existence theorem of Peano
%J Archivum mathematicum
%D 2011
%P 83-89
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a1/
%G en
%F ARM_2011_47_2_a1
Zubelevich, Oleg. A note on existence theorem of Peano. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 83-89. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a1/

[1] Bownds, M.: A uniqueness theorem for non-Lipschitzian systems of ordinary differential equations. Funkcial. Ekvac. 13 (1970), 61–65. | MR

[2] Brauer, F., Sternberg, S.: Local uniqueness, existence in the large, and the convergence of successive approximations. Amer. J. Math. 80 (1958), 421–430. | DOI | MR | Zbl

[3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw–Hill Book Company, 1955. | MR | Zbl

[4] Engelking, R.: General Topology. PWN–Polish Scientific Publishers, Warsaw, 1977. | MR | Zbl

[5] Folland, G. B.: Real analysis. Modern techniques and their applications. Second edition. Wiley-Interscience Publication, John Wiley and Sons, 1999. | MR

[6] Godunov, A. N.: Peano’s theorem in Banach spaces. Funct. Anal. Appl. 9 (1975), 53–55. | DOI | Zbl

[7] Hartman, P.: Ordinary Differential Equations. New York-London-Sydney, John Wiley and Sons, 1964. | MR | Zbl

[8] Kamke, E.: Differentialgleichungen reeler Functionen. Akademische Verlagsgesellschaft, Geest and Portig K.–G., 1930.

[9] Kato, S.: On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces. Funkcial. Ekvac. 19 (3) (1976), 239–245. | MR | Zbl

[10] Krasnoselskii, M. A., Krein, S. G.: On a class of uniqueness theorems for the equations $y^{\prime }=f(x,y)$. Uspekhi Mat. Nauk (N.S.) 11 no. 1 (67) (1956), 209–213. | MR

[11] Levy, P.: Provessus stochastiques et mouvement Brownien. Gauthier–Villars, Paris, 1948. | MR

[12] Ramankutty, P.: Kamke’s uniqueness theorem. J. London Math. Soc. (2) 22 (1982), 110–116. | MR

[13] Schwartz, L.: Analyse mathèmatique. Herman, 1967. | Zbl

[14] Sobolevskii, S. L.: Systems of differential equations with nonunique solutions of the Cauchy problem. Differential Equations 38 (3) (2002), 451–452. | DOI | MR

[15] Szep, A.: Existence theorem for weak solutions for ordinary differential equations in reflexive Banach spaces. Studia Sci. Math. Hungar. 6 (1971), 197–203. | MR

[16] Yorke, J. A.: A continuous differential equation in Hilbert space without existence. Funkcial. Ekvac. 13 (1970), 19–21. | MR | Zbl