The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 77-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we prove that the first eigenvalue of a complete spacelike submanifold in $R^{n+p}_p$ with the bounded Gauss map must be zero.
In this paper, we prove that the first eigenvalue of a complete spacelike submanifold in $R^{n+p}_p$ with the bounded Gauss map must be zero.
Classification : 53B30, 53C42
Keywords: spacelike submanifolds; the first eigenvalue
@article{ARM_2011_47_2_a0,
     author = {Han, Yingbo and Feng, Shuxiang},
     title = {The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$},
     journal = {Archivum mathematicum},
     pages = {77--82},
     year = {2011},
     volume = {47},
     number = {2},
     mrnumber = {2813533},
     zbl = {1249.53076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a0/}
}
TY  - JOUR
AU  - Han, Yingbo
AU  - Feng, Shuxiang
TI  - The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$
JO  - Archivum mathematicum
PY  - 2011
SP  - 77
EP  - 82
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a0/
LA  - en
ID  - ARM_2011_47_2_a0
ER  - 
%0 Journal Article
%A Han, Yingbo
%A Feng, Shuxiang
%T The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$
%J Archivum mathematicum
%D 2011
%P 77-82
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a0/
%G en
%F ARM_2011_47_2_a0
Han, Yingbo; Feng, Shuxiang. The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 77-82. http://geodesic.mathdoc.fr/item/ARM_2011_47_2_a0/

[1] Cheng, S. Y., Yau, S. T.: Differential equations on Riemannian manifolds and geometric applications. Comm. Pure Appl. Math. 28 (1975), 333–354. | DOI | MR

[2] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. John Wiley & Sons, Inc., 1969. | Zbl

[3] Wong, Y. C.: Euclidean n-space in pseudo-Euclidean spaces and differential geometry of Cartan domain. Bull. Amer. Math. Soc. (N.S.) 75 (1969), 409–414. | DOI | MR

[4] Wu, B. Y.: On the volume and Gauss map image of spacelike submanifolds in de Sitter space form. J. Geom. Phys. 53 (2005), 336–344. | DOI | MR | Zbl

[5] Wu, B. Y.: On the first eigenvalue of spacelike hypersurfaces in Lorentzian space. Arch. Math. (Brno) 42 (2006), 233–238. | MR | Zbl

[6] Xin, Y. L.: A rigidity theorem for spacelike graph of higher codimension. Manuscripta Math. 103 (2000), 191–202. | DOI | MR