An asymptotic formula for solutions of nonoscillatory half-linear differential equations
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 69-75 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish a Hartman type asymptotic formula for nonoscillatory solutions of the half-linear second order differential equation \[ \left(r(t)\Phi (y^{\prime })\right)^{\prime }+c(t)\Phi (y)=0\,,\quad \Phi (y):=|y|^{p-2}y\,,\ p>1\,. \]
We establish a Hartman type asymptotic formula for nonoscillatory solutions of the half-linear second order differential equation \[ \left(r(t)\Phi (y^{\prime })\right)^{\prime }+c(t)\Phi (y)=0\,,\quad \Phi (y):=|y|^{p-2}y\,,\ p>1\,. \]
Classification : 34C10
Keywords: half-linear differential equation; asymptotic formula; principal solution
@article{ARM_2011_47_1_a5,
     author = {Do\v{s}l\'y, Ond\v{r}ej and \v{R}ezn{\'\i}\v{c}kov\'a, Jana},
     title = {An asymptotic formula for solutions of nonoscillatory half-linear differential equations},
     journal = {Archivum mathematicum},
     pages = {69--75},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2813547},
     zbl = {1240.34176},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a5/}
}
TY  - JOUR
AU  - Došlý, Ondřej
AU  - Řezníčková, Jana
TI  - An asymptotic formula for solutions of nonoscillatory half-linear differential equations
JO  - Archivum mathematicum
PY  - 2011
SP  - 69
EP  - 75
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a5/
LA  - en
ID  - ARM_2011_47_1_a5
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%A Řezníčková, Jana
%T An asymptotic formula for solutions of nonoscillatory half-linear differential equations
%J Archivum mathematicum
%D 2011
%P 69-75
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a5/
%G en
%F ARM_2011_47_1_a5
Došlý, Ondřej; Řezníčková, Jana. An asymptotic formula for solutions of nonoscillatory half-linear differential equations. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a5/

[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht–Boston–London, 2002. | MR

[2] Cecchi, M., Došlá, Z., Marini, M.: Half-linear equations and characteristic properties of the principal solution. J. Differential Equations 18 (2005), 1243–1256. | MR | Zbl

[3] Chernyavskaya, N. A., Shuster, L.: Conditions for solvability of the Hartman-Wintner problem in terms of coefficients. Proc. Edinburgh Math. Soc. (2) 46 (2003), 687–702. | MR | Zbl

[4] Došlá, Z., Došlý, O.: Principal and nonprincipal solutions in oscillation theory of half-linear differential equations. Electron. J. Qual. Theory Differ. Equ. 2008 (10) (2008), 1–14.

[5] Došlý, O.: Half-Linear Differential Equations. Handbook of Differential Equations: Ordinary Differential Equations (Cañada, A., Drábek, P., Fonda, A., eds.), vol. I, Elsevier, Amsterdam, 2004, pp. 161–357. | MR | Zbl

[6] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. | MR | Zbl

[7] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations. Acta Math. Hungar. 120 (2008), 147–163. | DOI | MR | Zbl

[8] Došlý, O., Ünal, M.: Nonprincipal solutions of half-linear second order differential equations. Nonlinear Anal. 71 (2009), 4026–4033. | DOI | MR | Zbl

[9] Elbert, Á., Kusano, T.: Principal solutions of nonoscillatory half-linear differential equations. Adv. Math. Sci. Appl. 18 (1998), 745–759.

[10] Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia, 1982. | MR | Zbl

[11] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. | DOI | MR | Zbl

[12] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Anal. 64 (2006), 762–787. | DOI | MR | Zbl

[13] Mirzov, J. D.: Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. | MR

[14] Pátíková, Z.: Asymptotic formulas for non-oscillatory solutions of perturbed half-linear Euler equation. Nonlinear Anal. 69 (2008), 3281–3290. | DOI | MR | Zbl

[15] Trench, W. F.: Linear perturbations of nonoscillatory second order differential equations. Proc. Amer. Math. Soc. 97 (1986), 423–428. | DOI | MR

[16] Trench, W. F.: Linear perturbations of nonoscillatory second order differential equations II. Proc. Amer. Math. Soc. 131 (2003), 1415–1422. | DOI | MR