Stratonovich-Weyl correspondence for discrete series representations
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 51-68 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak{g}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak{g}$.
Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak{g}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak{g}$.
Classification : 22E46, 32M15, 46E22, 81S10
Keywords: Stratonovich-Weyl correspondence; Berezin quantization; Berezin transform; semisimple Lie group; coadjoint orbits; unitary representation; Hermitian symmetric space of the noncompact type; discrete series representation; reproducing kernel Hilbert space; coherent states
@article{ARM_2011_47_1_a4,
     author = {Cahen, Benjamin},
     title = {Stratonovich-Weyl correspondence for discrete series representations},
     journal = {Archivum mathematicum},
     pages = {51--68},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2813546},
     zbl = {1240.22011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a4/}
}
TY  - JOUR
AU  - Cahen, Benjamin
TI  - Stratonovich-Weyl correspondence for discrete series representations
JO  - Archivum mathematicum
PY  - 2011
SP  - 51
EP  - 68
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a4/
LA  - en
ID  - ARM_2011_47_1_a4
ER  - 
%0 Journal Article
%A Cahen, Benjamin
%T Stratonovich-Weyl correspondence for discrete series representations
%J Archivum mathematicum
%D 2011
%P 51-68
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a4/
%G en
%F ARM_2011_47_1_a4
Cahen, Benjamin. Stratonovich-Weyl correspondence for discrete series representations. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 51-68. http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a4/

[1] Ali, S. T., Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17 (4) (2005), 391–490. | DOI | MR | Zbl

[2] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151–211. | MR

[3] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains. Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3–4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. | MR | Zbl

[4] Arnal, D., Cahen, M., Gutt, S.: Exponential and holomorphic discrete series. Bull. Soc. Math. Belg. Sér. B 41 (1989), 207–227. | MR | Zbl

[5] Arratia, O., Del Olmo, M. A.: Moyal quantization on the cylinder. Rep. Math. Phys. 40 (1997), 149–157. | DOI | MR | Zbl

[6] Ballesteros, A., Gadella, M., Del Olmo, M. A.: Moyal quantization of $2+1$–dimensional Galilean systems. J. Math. Phys. 33 (1992), 3379–3386. | DOI | MR | Zbl

[7] Berezin, F. A.: Quantization. Math. USSR–Izv. 8 (1974), 1109–1165, Russian. | Zbl

[8] Berezin, F. A.: Quantization in complex symmetric domains. Math. USSR–Izv. 9 (1975), 341–379.

[9] Brif, C., Mann, A.: Phase–space formulation of quantum mechanics and quantum–state reconstruction for physical systems with Lie–group symmetries. Phys. Rev. A 59 (2) (1999), 971–987. | DOI | MR

[10] Cahen, B.: Contraction de $SU(1,1)$ vers le groupe de Heisenberg. Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19–43. | MR | Zbl

[11] Cahen, B.: Weyl quantization for semidirect products. Differential Geom. Appl. 25 (2007), 177–190. | DOI | MR | Zbl

[12] Cahen, B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66–84. | MR | Zbl

[13] Cahen, B.: Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310. | MR | Zbl

[14] Cahen, B.: Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010), 301–311. | MR

[15] Cahen, B.: Stratonovich–Weyl correspondence for compact semisimple Lie groups. Rend. Circ. Mat. Palermo (2) 59 (2010), 331–354. | DOI | MR | Zbl

[16] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds IV. Lett. Math. Phys. 34 (1995), 159–168. | DOI | MR

[17] Cariñena, J. F., Gracia–Bondìa, J. M., Vàrilly, J. C.: Relativistic quantum kinematics in the Moyal representation. J. Phys. A 23 (1990), 901–933. | DOI

[18] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal–Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials. J. Funct. Anal. 204 (2003), 157–195. | DOI | MR | Zbl

[19] Figueroa, H., Gracia–Bondìa, J. M., Vàrilly, J. C.: Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys. 31 (1990), 2664–2671. | DOI | MR

[20] Folland, B.: Harmonic Analysis in Phase Space. Princeton Univ. Press, 1989. | MR | Zbl

[21] Gracia–Bondìa, J. M.: Generalized Moyal quantization on homogeneous symplectic spaces. Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93–114. | MR

[22] Gracia–Bondìa, J. M., Vàrilly, J. C.: The Moyal representation for spin. Ann. Physics 190 (1989), 107–148. | DOI | MR

[23] Helgason, S.: Differential geometry, Lie groups and symmetric spaces. Grad. Stud. Math. 34 (2001). | MR | Zbl

[24] Herb, R. A., Wolf, J. A.: Wave packets for the relative discrete series I. The holomorphic case. J. Funct. Anal. 73 (1987), 1–37. | DOI | MR | Zbl

[25] Hua, L. K.: Harmonic analysis of functions of several complex variables in the classical domains. American Mathematical Society, Providence, R.I., 1963. | MR

[26] Kirillov, A. A.: Lectures on the orbit method. Grad. Stud. Math. 64 (2004). | MR | Zbl

[27] Knapp, A. W.: Representation theory of semi–simple groups. An overview based on examples. Princeton Math. Ser. 36 (1986).

[28] Moore, C. C.: Compactifications of symmetric spaces II: The Cartan domains. Amer. J. Math. 86 (2) (1964), 358–378. | DOI | MR

[29] Neeb, K.–H.: Holomorphy and Convexity in Lie Theory. de Gruyter Exp. Math. 28 (2000), xxii+778 pp. | MR

[30] Nomura, T.: Berezin transforms and group representations. J. Lie Theory 8 (1998), 433–440. | MR | Zbl

[31] Oliveira, M. P. De: Some formulas for the canonical Kernel function. Geom. Dedicata 86 (2001), 227–247. | DOI | MR | Zbl

[32] Ørsted, B., Zhang, G.: Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ. Math. J. 43 (2) (1994), 551–583. | DOI | MR

[33] Peetre, J., Zhang, G.: A weighted Plancherel formula III. The case of a hyperbolic matrix ball. Collect. Math. 43 (1992), 273–301. | MR

[34] Satake, I.: Algebraic structures of symmetric domains. Iwanami Sho–ten, Tokyo and Princeton Univ. Press, 1971. | MR

[35] Stratonovich, R. L.: On distributions in representation space. Soviet Physics JETP 4 (1957), 891–898. | MR

[36] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators. Comm. Math. Phys. 164 (3) (1994), 563–597. | DOI | MR | Zbl

[37] Varadarajan, V. S.: Lie groups, Lie algebras and their representations. Grad. Texts in Math. 102 (1984), xiii+430 pp. | MR | Zbl

[38] Wildberger, N. J.: On the Fourier transform of a compact semisimple Lie group. J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. | DOI | MR | Zbl

[39] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces. Manuscripta Math. 97 (1998), 371–388. | DOI | MR | Zbl