Keywords: sequence-covering; compact-covering; pseudo-sequence-covering; sequentially-quotient; $\pi $-mapping; $ls$-Ponomarev-system; double point-star cover
@article{ARM_2011_47_1_a3,
author = {Van Dung, Nguyen},
title = {$\pi $-mappings in $ls${-Ponomarev-systems}},
journal = {Archivum mathematicum},
pages = {35--49},
year = {2011},
volume = {47},
number = {1},
mrnumber = {2813545},
zbl = {1240.54101},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a3/}
}
Van Dung, Nguyen. $\pi $-mappings in $ls$-Ponomarev-systems. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a3/
[1] An, T. V., Dung, N. V.: On $\pi $–images of locally separable metric spaces. Internat. J. Math. Math. Sci. (2008), 1–8. | DOI | Zbl
[2] An, T. V., Dung, N. V.: On $ls$–Ponomarev systems and $s$–images of locally separable metric spaces. Lobachevskii J. Math. 29 (2008 (3)), 111–118. | DOI | MR | Zbl
[3] Arhangel’skii, A. V.: Mappings and spaces. Russian Math. Surveys 21 (1966), 115–162. | DOI | MR
[4] Boone, J. R., Siwiec, F.: Sequentially quotient mappings. Czechoslovak Math. J. 26 (1976), 174–182. | MR | Zbl
[5] Engelking, R.: General topology. PWN – Polish Scientific Publishers, Warsaw, 1977. | MR | Zbl
[6] Ge, Y.: On compact images of locally separable metric spaces. Topology Proc. 27 (1) (2003), 351–360. | MR | Zbl
[7] Ge, Y.: On pseudo–sequence–covering $\pi $–images of metric spaces. Mat. Vesnik 57 (2005), 113–120. | MR
[8] Ge, Y.: On three equivalences concerning Ponomarev–systems. Arch. Math. (Brno) 42 (2006), 239–246. | MR | Zbl
[9] Ikeda, Y., Liu, C., Tanaka, Y.: Quotient compact images of metric spaces, and related matters. Topology Appl. 122 (2002), 237–252. | DOI | MR | Zbl
[10] Li, Z.: On $\pi $–$s$–images of metric spaces. nternat. J. Math. Math. Sci. 7 (2005), 1101–1107. | DOI | Zbl
[11] Lin, S.: Point-countable covers and sequence-covering mappings. Chinese Science Press, Beijing, 2002. | MR | Zbl
[12] Lin, S., Liu, C, Dai, M.: Images on locally separable metric spaces. Acta Math. Sinica (N.S.) 13 (1) (1997), 1–8. | DOI | MR | Zbl
[13] Lin, S., Yan, P.: Notes on $cfp$-covers. Comment. Math. Univ. Carolin. 44 (2) (2003), 295–306. | MR | Zbl
[14] Michael, E.: A note on closed maps and compact subsets. Israel J. Math. 2 (1964), 173–176. | DOI | MR
[15] Michael, E.: $\aleph _0$–spaces. J. Math. Mech. 15 (1966), 983–1002. | MR
[16] Ponomarev, V. I.: Axiom of countability and continuous mappings. Bull. Polish Acad. Sci. Math. 8 (1960), 127–133. | MR
[17] Siwiec, F.: Sequence-covering and countably bi–quotient mappings. General Topology Appl. 1 (1971), 143–154. | DOI | MR | Zbl
[18] Tanaka, Y.: Theory of $k$–networks II. Questions Answers Gen. Topology 19 (2001), 27–46. | MR | Zbl
[19] Tanaka, Y., Ge, Y.: Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32 (1) (2006), 99–117. | MR | Zbl
[20] Yan, P.: On the compact images of metric spaces. J. Math. Study 30 (2) (1997), 185–187. | MR
[21] Yan, P.: On strong sequence–covering compact mappings. Northeast. Math. J. 14 (1998), 341–344. | MR | Zbl