$\pi $-mappings in $ls$-Ponomarev-systems
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 35-49 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We use the $ls$-Ponomarev-system $(f, M, X, \lbrace \mathcal{P}_{\lambda ,n}\rbrace )$, where $M$ is a locally separable metric space, to give a consistent method to construct a $\pi $-mapping (compact mapping) with covering-properties from a locally separable metric space $M$ onto a space $X$. As applications of these results, we systematically get characterizations of certain $\pi $-images (compact images) of locally separable metric spaces.
We use the $ls$-Ponomarev-system $(f, M, X, \lbrace \mathcal{P}_{\lambda ,n}\rbrace )$, where $M$ is a locally separable metric space, to give a consistent method to construct a $\pi $-mapping (compact mapping) with covering-properties from a locally separable metric space $M$ onto a space $X$. As applications of these results, we systematically get characterizations of certain $\pi $-images (compact images) of locally separable metric spaces.
Classification : 54E40, 54E99
Keywords: sequence-covering; compact-covering; pseudo-sequence-covering; sequentially-quotient; $\pi $-mapping; $ls$-Ponomarev-system; double point-star cover
@article{ARM_2011_47_1_a3,
     author = {Van Dung, Nguyen},
     title = {$\pi $-mappings in $ls${-Ponomarev-systems}},
     journal = {Archivum mathematicum},
     pages = {35--49},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2813545},
     zbl = {1240.54101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a3/}
}
TY  - JOUR
AU  - Van Dung, Nguyen
TI  - $\pi $-mappings in $ls$-Ponomarev-systems
JO  - Archivum mathematicum
PY  - 2011
SP  - 35
EP  - 49
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a3/
LA  - en
ID  - ARM_2011_47_1_a3
ER  - 
%0 Journal Article
%A Van Dung, Nguyen
%T $\pi $-mappings in $ls$-Ponomarev-systems
%J Archivum mathematicum
%D 2011
%P 35-49
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a3/
%G en
%F ARM_2011_47_1_a3
Van Dung, Nguyen. $\pi $-mappings in $ls$-Ponomarev-systems. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a3/

[1] An, T. V., Dung, N. V.: On $\pi $–images of locally separable metric spaces. Internat. J. Math. Math. Sci. (2008), 1–8. | DOI | Zbl

[2] An, T. V., Dung, N. V.: On $ls$–Ponomarev systems and $s$–images of locally separable metric spaces. Lobachevskii J. Math. 29 (2008 (3)), 111–118. | DOI | MR | Zbl

[3] Arhangel’skii, A. V.: Mappings and spaces. Russian Math. Surveys 21 (1966), 115–162. | DOI | MR

[4] Boone, J. R., Siwiec, F.: Sequentially quotient mappings. Czechoslovak Math. J. 26 (1976), 174–182. | MR | Zbl

[5] Engelking, R.: General topology. PWN – Polish Scientific Publishers, Warsaw, 1977. | MR | Zbl

[6] Ge, Y.: On compact images of locally separable metric spaces. Topology Proc. 27 (1) (2003), 351–360. | MR | Zbl

[7] Ge, Y.: On pseudo–sequence–covering $\pi $–images of metric spaces. Mat. Vesnik 57 (2005), 113–120. | MR

[8] Ge, Y.: On three equivalences concerning Ponomarev–systems. Arch. Math. (Brno) 42 (2006), 239–246. | MR | Zbl

[9] Ikeda, Y., Liu, C., Tanaka, Y.: Quotient compact images of metric spaces, and related matters. Topology Appl. 122 (2002), 237–252. | DOI | MR | Zbl

[10] Li, Z.: On $\pi $–$s$–images of metric spaces. nternat. J. Math. Math. Sci. 7 (2005), 1101–1107. | DOI | Zbl

[11] Lin, S.: Point-countable covers and sequence-covering mappings. Chinese Science Press, Beijing, 2002. | MR | Zbl

[12] Lin, S., Liu, C, Dai, M.: Images on locally separable metric spaces. Acta Math. Sinica (N.S.) 13 (1) (1997), 1–8. | DOI | MR | Zbl

[13] Lin, S., Yan, P.: Notes on $cfp$-covers. Comment. Math. Univ. Carolin. 44 (2) (2003), 295–306. | MR | Zbl

[14] Michael, E.: A note on closed maps and compact subsets. Israel J. Math. 2 (1964), 173–176. | DOI | MR

[15] Michael, E.: $\aleph _0$–spaces. J. Math. Mech. 15 (1966), 983–1002. | MR

[16] Ponomarev, V. I.: Axiom of countability and continuous mappings. Bull. Polish Acad. Sci. Math. 8 (1960), 127–133. | MR

[17] Siwiec, F.: Sequence-covering and countably bi–quotient mappings. General Topology Appl. 1 (1971), 143–154. | DOI | MR | Zbl

[18] Tanaka, Y.: Theory of $k$–networks II. Questions Answers Gen. Topology 19 (2001), 27–46. | MR | Zbl

[19] Tanaka, Y., Ge, Y.: Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32 (1) (2006), 99–117. | MR | Zbl

[20] Yan, P.: On the compact images of metric spaces. J. Math. Study 30 (2) (1997), 185–187. | MR

[21] Yan, P.: On strong sequence–covering compact mappings. Northeast. Math. J. 14 (1998), 341–344. | MR | Zbl