Keywords: iterated differential equations; maximal and minimal solutions
@article{ARM_2011_47_1_a2,
author = {Rost\'as, Krist{\'\i}na},
title = {Minimal and maximal solutions of fourth order iterated differential equations with singular nonlinearity},
journal = {Archivum mathematicum},
pages = {23--33},
year = {2011},
volume = {47},
number = {1},
mrnumber = {2813544},
zbl = {1240.34181},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a2/}
}
Rostás, Kristína. Minimal and maximal solutions of fourth order iterated differential equations with singular nonlinearity. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a2/
[1] Barret, J. H.: Oscillation theory of ordinary linear differential equations. Adv. Math. 3 (1969), 415–509. | DOI | MR
[2] Fink, A. M., Kusano, T.: Nonoscillation theorems for differential equations with general deviating arguments. Lecture Notes in Math. 1032 (1983), 224–239. | DOI | MR | Zbl
[3] Kusano, T., Swanson, C. A.: Asymptotic properties of semilinear elliptic equations. Funkcial. Ekvac. 26 (1983), 115–129. | MR | Zbl
[4] Kusano, T., Swanson, C. A.: Asymptotic theory of singular semilinear elliptic equations. Canad. Math. Bull. 27 (1984), 223–232. | DOI | MR | Zbl
[5] Neuman, F.: Oscillatory behavior of iterative linear ordinary differential equations depends on their order. Arch. Math. (Brno) 22 (4) (1986), 187–192. | MR | Zbl
[6] Pólya, G.: On the mean-value theorem corresponding to a given linear homogeneous differential equations. Trans. Amer. Math. Soc. 24 (1922), 312–324. | DOI | MR