Minimal and maximal solutions of fourth order iterated differential equations with singular nonlinearity
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 23-33 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we are concerned with sufficient conditions for the existence of minimal and maximal solutions of differential equations of the form \[ L_{4}y+f(t,y)=0\,, \] where $L_{4}y$ is the iterated linear differential operator of order $4$ and $f\colon [a,\infty )\times (0,\infty )\rightarrow (0,\infty )$ is a continuous function.
In this paper we are concerned with sufficient conditions for the existence of minimal and maximal solutions of differential equations of the form \[ L_{4}y+f(t,y)=0\,, \] where $L_{4}y$ is the iterated linear differential operator of order $4$ and $f\colon [a,\infty )\times (0,\infty )\rightarrow (0,\infty )$ is a continuous function.
Classification : 34C10
Keywords: iterated differential equations; maximal and minimal solutions
@article{ARM_2011_47_1_a2,
     author = {Rost\'as, Krist{\'\i}na},
     title = {Minimal and maximal solutions of fourth order iterated differential equations  with singular nonlinearity},
     journal = {Archivum mathematicum},
     pages = {23--33},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2813544},
     zbl = {1240.34181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a2/}
}
TY  - JOUR
AU  - Rostás, Kristína
TI  - Minimal and maximal solutions of fourth order iterated differential equations  with singular nonlinearity
JO  - Archivum mathematicum
PY  - 2011
SP  - 23
EP  - 33
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a2/
LA  - en
ID  - ARM_2011_47_1_a2
ER  - 
%0 Journal Article
%A Rostás, Kristína
%T Minimal and maximal solutions of fourth order iterated differential equations  with singular nonlinearity
%J Archivum mathematicum
%D 2011
%P 23-33
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a2/
%G en
%F ARM_2011_47_1_a2
Rostás, Kristína. Minimal and maximal solutions of fourth order iterated differential equations  with singular nonlinearity. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a2/

[1] Barret, J. H.: Oscillation theory of ordinary linear differential equations. Adv. Math. 3 (1969), 415–509. | DOI | MR

[2] Fink, A. M., Kusano, T.: Nonoscillation theorems for differential equations with general deviating arguments. Lecture Notes in Math. 1032 (1983), 224–239. | DOI | MR | Zbl

[3] Kusano, T., Swanson, C. A.: Asymptotic properties of semilinear elliptic equations. Funkcial. Ekvac. 26 (1983), 115–129. | MR | Zbl

[4] Kusano, T., Swanson, C. A.: Asymptotic theory of singular semilinear elliptic equations. Canad. Math. Bull. 27 (1984), 223–232. | DOI | MR | Zbl

[5] Neuman, F.: Oscillatory behavior of iterative linear ordinary differential equations depends on their order. Arch. Math. (Brno) 22 (4) (1986), 187–192. | MR | Zbl

[6] Pólya, G.: On the mean-value theorem corresponding to a given linear homogeneous differential equations. Trans. Amer. Math. Soc. 24 (1922), 312–324. | DOI | MR