Tangent Dirac structures of higher order
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 17-22 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that: If $L$ is integrable then the tangent lift is also integrable. In this paper, we generalize this lifting to tangent bundle of higher order.
Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that: If $L$ is integrable then the tangent lift is also integrable. In this paper, we generalize this lifting to tangent bundle of higher order.
Classification : 53C15, 53C75, 53D05
Keywords: Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformations
@article{ARM_2011_47_1_a1,
     author = {Kouotchop Wamba, P. M. and Ntyam, A. and Wouafo Kamga, J.},
     title = {Tangent {Dirac} structures of higher order},
     journal = {Archivum mathematicum},
     pages = {17--22},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2813543},
     zbl = {1240.53058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a1/}
}
TY  - JOUR
AU  - Kouotchop Wamba, P. M.
AU  - Ntyam, A.
AU  - Wouafo Kamga, J.
TI  - Tangent Dirac structures of higher order
JO  - Archivum mathematicum
PY  - 2011
SP  - 17
EP  - 22
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a1/
LA  - en
ID  - ARM_2011_47_1_a1
ER  - 
%0 Journal Article
%A Kouotchop Wamba, P. M.
%A Ntyam, A.
%A Wouafo Kamga, J.
%T Tangent Dirac structures of higher order
%J Archivum mathematicum
%D 2011
%P 17-22
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a1/
%G en
%F ARM_2011_47_1_a1
Kouotchop Wamba, P. M.; Ntyam, A.; Wouafo Kamga, J. Tangent Dirac structures of higher order. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a1/

[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^{k}T^{\ast }$ and $T^{\ast }T^{k}$. C. R. Acad. Sci., Paris, Sér. II 309 (1989), 1509–1514. | MR

[2] Courant, T.: Tangent Dirac Structures. J. Phys. A: Math. Gen. 23 (22) (1990), 5153–5168. | DOI | MR | Zbl

[3] Courant, T.: Tangent Lie Algebroids. J. Phys. A: Math. Gen. 27 (13) (1994), 4527–4536. | DOI | MR | Zbl

[4] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. | MR | Zbl

[5] Grabowski, J., Urbanski, P.: Tangent lifts of Poisson and related structures. J. Phys. A: Math. Gen. 28 (23) (1995), 6743–6777. | DOI | MR | Zbl

[6] Kolář, I., Michor, P., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. | MR

[7] Morimoto, A.: Lifting of some type of tensors fields and connections to tangent bundles of $p^{r}$-velocities. Nagoya Math. J. 40 (1970), 13–31. | MR

[8] Ntyam, A., Wouafo Kamga, J.: New versions of curvatures and torsion formulas of complete lifting of a linear connection to Weil bundles. Ann. Pol. Math. 82 (3) (2003), 233–240. | DOI | MR