Almost periodic sequences and functions with given values
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 1-16 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present a method for constructing almost periodic sequences and functions with values in a metric space. Applying this method, we find almost periodic sequences and functions with prescribed values. Especially, for any totally bounded countable set $X$ in a metric space, it is proved the existence of an almost periodic sequence $\lbrace \psi _k\rbrace _{k \in \mathbb{Z}}$ such that $\lbrace \psi _k; \, k \in \mathbb{Z}\rbrace = X$ and $\psi _k = \psi _{k + l q(k)}$, $l \in \mathbb{Z}$ for all $k$ and some $q(k) \in \mathbb{N}$ which depends on $k$.
We present a method for constructing almost periodic sequences and functions with values in a metric space. Applying this method, we find almost periodic sequences and functions with prescribed values. Especially, for any totally bounded countable set $X$ in a metric space, it is proved the existence of an almost periodic sequence $\lbrace \psi _k\rbrace _{k \in \mathbb{Z}}$ such that $\lbrace \psi _k; \, k \in \mathbb{Z}\rbrace = X$ and $\psi _k = \psi _{k + l q(k)}$, $l \in \mathbb{Z}$ for all $k$ and some $q(k) \in \mathbb{N}$ which depends on $k$.
Classification : 11K70, 42A75
Keywords: almost periodic functions; almost periodic sequences; almost periodicity in metric spaces
@article{ARM_2011_47_1_a0,
     author = {Vesel\'y, Michal},
     title = {Almost periodic sequences and functions  with given values},
     journal = {Archivum mathematicum},
     pages = {1--16},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2813542},
     zbl = {1240.11088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a0/}
}
TY  - JOUR
AU  - Veselý, Michal
TI  - Almost periodic sequences and functions  with given values
JO  - Archivum mathematicum
PY  - 2011
SP  - 1
EP  - 16
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a0/
LA  - en
ID  - ARM_2011_47_1_a0
ER  - 
%0 Journal Article
%A Veselý, Michal
%T Almost periodic sequences and functions  with given values
%J Archivum mathematicum
%D 2011
%P 1-16
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a0/
%G en
%F ARM_2011_47_1_a0
Veselý, Michal. Almost periodic sequences and functions  with given values. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/ARM_2011_47_1_a0/

[1] Bede, B., Gal, S. G.: Almost periodic fuzzy-number-valued functions. Fuzzy Sets and Systems 147 (3) (2004), 385–403. | DOI | MR | Zbl

[2] Corduneanu, C.: Almost Periodic Functions. John Wiley and Sons, New York, 1968. | MR | Zbl

[3] Flor, P.: Über die Wertmengen fastperiodischer Folgen. Monatsh. Math. 67 (1963), 12–17. | DOI | MR | Zbl

[4] Jajte, R.: On almost-periodic sequences. Colloq. Math. 13 (1964/1965), 265–267. | MR

[5] Janeczko, S., Zajac, M.: Critical points of almost periodic functions. Bull. Polish Acad. Sci. Math. 51 (2003), 107–120. | MR | Zbl

[6] Muchnik, A., Semenov, A., Ushakov, M.: Almost periodic sequences. Theoret. Comput. Sci. 304 (2003), 1–33. | DOI | MR | Zbl

[7] Tornehave, H.: On almost periodic movements. Danske Vid. Selsk. Mat.–Fys. Medd. 28 (13) (1954), 1–42. | MR | Zbl

[8] Veselý, M.: Construction of almost periodic functions with given properties. In preparation.

[9] Veselý, M.: Construction of almost periodic sequences with given properties. Electron. J. Differential Equations 126 (2008), 1–22. | MR | Zbl