Keywords: Clifford analysis; integral formula of hyperbolic type; hyperboloid; Minkowski space
@article{ARM_2010_46_5_a6,
author = {Sikora, Martin},
title = {An integral formula of hyperbolic type for solutions of the {Dirac} equation on {Minkowski} space with initial conditions on a hyperboloid},
journal = {Archivum mathematicum},
pages = {363--376},
year = {2010},
volume = {46},
number = {5},
mrnumber = {2753990},
zbl = {1249.30122},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a6/}
}
TY - JOUR AU - Sikora, Martin TI - An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid JO - Archivum mathematicum PY - 2010 SP - 363 EP - 376 VL - 46 IS - 5 UR - http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a6/ LA - en ID - ARM_2010_46_5_a6 ER -
%0 Journal Article %A Sikora, Martin %T An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid %J Archivum mathematicum %D 2010 %P 363-376 %V 46 %N 5 %U http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a6/ %G en %F ARM_2010_46_5_a6
Sikora, Martin. An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid. Archivum mathematicum, Tome 46 (2010) no. 5, pp. 363-376. http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a6/
[1] Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Pitman Advanced Pub. Program, 1982. | MR | Zbl
[2] Bureš, J., Souček, V.: The Penrose transform on isotropic Grassmannians, in 75 Years of Radon transform. Conf. Proc. Lecture Notes Math. Phys., 1994. | MR
[3] Delanghe, R., Lávička, R., Souček, V.: On polynomial solutions of generalized Moisil-Theodoresco systems and Hodge-de Rham systems. arXiv:0908.0842, pp.11, 08 2009.
[4] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor-valued functions. A function theory for the Dirac operator. vol. 53, Math. Appl., 1992. | MR
[5] Dodson, M., Souček, V.: Leray residues applied to the solution of the Laplace and wave equations. Geometry seminars 1984 (Italian) (Bologna, 1984), Univ. Stud. Bologna, 1985, pp. 93–107. | MR
[6] Eelbode, D.: Clifford analysis on the hyperbolic unit ball. Ph.D. thesis, Ghent University, 2005. | MR
[7] Frenkel, I., Libine, M.: Quaternionic analysis, representation theory and physics. Adv. Math. 218 (2008), 1806–1877. | DOI | MR | Zbl
[8] Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. John Wiley $\&$ Sons, Inc., 1997.
[9] Gürsey, F., Tze, C.-H.: On the role of division, Jordan and related algebras in particle physics. World Scientific Publishing Co., 1996. | MR
[10] Leutwiler, H.: Modified Clifford analysis. Complex Variables and Elliptic Equations 17 (3,4) (1992), 153–171, | DOI | MR | Zbl
[11] Libine, M.: Hyperbolic Cauchy integral formula for the split complex number. arXiv:0712.0375v1, pp.6, 12 2007.
[12] Souček, V.: Complex-quaternionic analysis applied to spin–1/2 massless fields. Complex Variables and Elliptic Equations 1 (4) (1983), 327–346, | DOI | MR
[13] Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. | DOI | MR | Zbl