Geometry of third order ODE systems
Archivum mathematicum, Tome 46 (2010) no. 5, pp. 351-361 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We compute cohomology spaces of Lie algebras that describe differential invariants of third order ordinary differential equations. We prove that the algebra of all differential invariants is generated by 2 tensorial invariants of order 2, one invariant of order 3 and one invariant of order 4. The main computational tool is a Serre-Hochschild spectral sequence and the representation theory of semisimple Lie algebras. We compute differential invariants up to degree 2 as application.
We compute cohomology spaces of Lie algebras that describe differential invariants of third order ordinary differential equations. We prove that the algebra of all differential invariants is generated by 2 tensorial invariants of order 2, one invariant of order 3 and one invariant of order 4. The main computational tool is a Serre-Hochschild spectral sequence and the representation theory of semisimple Lie algebras. We compute differential invariants up to degree 2 as application.
Classification : 17B56, 34A26, 53B15
Keywords: geometry of ordinary differential equations; normal Cartan connections, cohomology of Lie algebras
@article{ARM_2010_46_5_a5,
     author = {Medvedev, Alexandr},
     title = {Geometry of third order {ODE} systems},
     journal = {Archivum mathematicum},
     pages = {351--361},
     year = {2010},
     volume = {46},
     number = {5},
     mrnumber = {2753989},
     zbl = {1249.34024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a5/}
}
TY  - JOUR
AU  - Medvedev, Alexandr
TI  - Geometry of third order ODE systems
JO  - Archivum mathematicum
PY  - 2010
SP  - 351
EP  - 361
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a5/
LA  - en
ID  - ARM_2010_46_5_a5
ER  - 
%0 Journal Article
%A Medvedev, Alexandr
%T Geometry of third order ODE systems
%J Archivum mathematicum
%D 2010
%P 351-361
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a5/
%G en
%F ARM_2010_46_5_a5
Medvedev, Alexandr. Geometry of third order ODE systems. Archivum mathematicum, Tome 46 (2010) no. 5, pp. 351-361. http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a5/

[1] Doubrov, B.: Contact trivialization of ordinary differential equations. Proc. Conf., Opava (Czech Republic), Differential Geometry and Its Applications, 2001, pp. 73–84. | MR | Zbl

[2] Doubrov, B.: Generalized Wilczynski invariants for non-linear ordinary differential equations. Symmetries and overdetermined systems of partial differential equations. IMA Vol. Math. Appl. 144 (2008), 25–40. | DOI | MR

[3] Doubrov, B., Komrakov, B., Morimoto, T.: Equivalence of holonomic differential equations. Lobachevskij J. Math. 3 (1999), 39–71. | MR | Zbl

[4] Fuks, D. B.: Cohomology of infinite-dimensional Lie algebras. Contemporary Soviet Mathematics, New York: Consultants Bureau, 1986. | MR | Zbl

[5] Kobayashi, S., Nagano, T.: On filtered Lie algebras and geometric structures III. J. Math. Mech. 14 (1965), 679–706. | MR

[6] Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. of Math. (2) 24 (1961), 329–387. | DOI | MR | Zbl

[7] Morimoto, T.: Geometric structures on filtered manifolds. Hokkaido Math. J. 22 (1993), 263–347. | MR | Zbl

[8] Tanaka, N.: On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ. 10 (1970), 1–82. | MR | Zbl

[9] Tanaka, N.: On the equivalence problems associated with simple graded Lie algebras. Hokkaido Math. J. 8 (1979), 23–84. | MR | Zbl

[10] Tanaka, N.: Geometric theory of ordinary differential equations. Report of Grant-in-Aid for Scientific Research MESC Japan (1989).

[11] Yamaguchi, K.: Differential systems associated with simple graded Lie algebras. Adv. Stud. Pure Math. 22 (1993), 413–494. | MR | Zbl