Keywords: spherical monogenics; orthogonal basis; Legendre polynomials; $\mathfrak{sl}(2, {\mathbb{C}})$-module
@article{ARM_2010_46_5_a4,
author = {L\'avi\v{c}ka, Roman},
title = {Canonical bases for $\mathfrak{sl}(2,{\mathbb{C}})$-modules of spherical monogenics in dimension 3},
journal = {Archivum mathematicum},
pages = {339--349},
year = {2010},
volume = {46},
number = {5},
mrnumber = {2753988},
zbl = {1249.30136},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a4/}
}
Lávička, Roman. Canonical bases for $\mathfrak{sl}(2,{\mathbb{C}})$-modules of spherical monogenics in dimension 3. Archivum mathematicum, Tome 46 (2010) no. 5, pp. 339-349. http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a4/
[1] Bock, S.: Über funktionentheoretische Methoden in der räumlichen Elastizitätstheorie. Ph.D. thesis, University Weimar, 2010, German, http://e-pub.uni-weimar.de/frontdoor.php?source_opus=1503
[2] Bock, S., Gürlebeck, K.: On an orthonormal basis of solid spherical monogenics recursively generated by anti–holomorphic $\bar{z}$–powers. Proc. of ICNAAM 2009, AIP Conference Proceedings (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 1168, 2009, pp. 765–768. | Zbl
[3] Bock, S., Gürlebeck, K.: On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 33 (4) (2010), 394–411. | MR | Zbl
[4] Bock, S., Gürlebeck, K., Lávička, R., Souček, V.: Gelfand–Tsetlin bases for spherical monogenics in dimension 3. preprint.
[5] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London, 1982. | MR | Zbl
[6] Brackx, F., Schepper, H. De, Lávička, R., Souček, V.: Gelfand–Tsetlin Bases of Orthogonal Polynomials in Hermitean Clifford Analysis. preprint.
[7] Brackx, F., Schepper, H. De, Lávička, R., Souček, V.: The Cauchy–Kovalevskaya Extension Theorem in Hermitean Clifford Analysis. preprint.
[8] Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, New York, 1985. | MR
[9] Cação, I.: Constructive approximation by monogenic polynomials. Ph.D. thesis, Univ. Aveiro, 2004.
[10] Cação, I., Malonek, H. R.: Remarks on some properties of monogenic polynomials. Proc. of ICNAAM 2006 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), Wiley–VCH, Weinheim, 2006, pp. 596–599.
[11] Cação, I., Malonek, H. R.: On a complete set of hypercomplex Appell polynomials. Proc. of ICNAAM 2008 (Timos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 1048, 2008, AIP Conference Proceedings, pp. 647–650.
[12] Delanghe, R.: On homogeneous polynomial solutions of the Riesz system and their harmonic potentials. Complex Var. Elliptic Equ. 52 (10–11) (2007), 1047–1061. | MR | Zbl
[13] Delanghe, R., Lávička, R., Souček, V.: The Gelfand–Tsetlin bases for Hodge–de Rham systems in Euclidean spaces. preprint.
[14] Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor–Valued Functions. Kluwer Academic Publishers, Dordrecht, 1992. | MR
[15] Falcão, M. I., Cruz, J. F., Malonek, H. R.: Remarks on the generation of monogenic functions. Proc. of IKM 2006 (Gürlebeck, K., Könke, C., eds.), Bauhaus–University Weimar, 2006, ISSN 1611–4086.
[16] Falcão, M. I., Malonek, H. R.: Generalized exponentials through Appell sets in $\mathbb{R}^{n+1}$ and Bessel functions. Proc. of ICNAAM 2007 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 936, 2007, AIP Conference Proceedings, pp. 750–753.
[17] Gilbert, J. E., Murray, M. A. M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, 1991. | MR | Zbl
[18] Gürlebeck, K., Morais, J.: On the development of Bohr’s phenomenon in the context of quaternionic analysis and related problems. arXiv:1004.1188v1 [math.CV], 2010.
[19] Gürlebeck, K., Morais, J.: Real–Part Estimates for Solutions of the Riesz System in $\mathbb{R}^3$. arXiv:1004.1191v1 [math.CV], 2010.
[20] Gürlebeck, K., Morais, J.: On monogenic primitives of Fueter polynomials. Proc. of ICNAAM 2006 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), Wiley–VCH, Weinheim, 2006, pp. 600–605.
[21] Gürlebeck, K., Morais, J.: On the calculation of monogenic primitives. Adv. Appl. Clifford Algebras 17 (3) (2007), 481–496. | DOI | MR | Zbl
[22] Gürlebeck, K., Morais, J.: Bohr type theorem for monogenic power series. Comput. Methods Funct. Theory 9 (2) (2009), 633–651. | DOI | MR
[23] Sommen, F.: Spingroups and spherical means III. Rend. Circ. Mat. Palermo (2) Suppl. 1 (1989), 295–323. | MR | Zbl
[24] Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. | DOI | MR | Zbl
[25] Van Lancker, P., : Spherical monogenics: An algebraic approach. Adv. Appl. Clifford Algebra 19 (2009), 467–496. | DOI | MR | Zbl
[26] Zeitlinger, P.: Beiträge zur Clifford Analysis und deren Modifikation. Ph.D. thesis, University Erlangen, 2005.