Special Einstein’s equations on Kähler manifolds
Archivum mathematicum, Tome 46 (2010) no. 5, pp. 333-337 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This work is devoted to the study of Einstein equations with a special shape of the energy-momentum tensor. Our results continue Stepanov’s classification of Riemannian manifolds according to special properties of the energy-momentum tensor to Kähler manifolds. We show that in this case the number of classes reduces.
This work is devoted to the study of Einstein equations with a special shape of the energy-momentum tensor. Our results continue Stepanov’s classification of Riemannian manifolds according to special properties of the energy-momentum tensor to Kähler manifolds. We show that in this case the number of classes reduces.
Classification : 32Q15, 35Q76, 53B20, 53B30, 53B35, 53B50
Keywords: Einstein’s equations; Kähler manifolds; pseudo-Riemannian spaces; Riemannian spaces
@article{ARM_2010_46_5_a3,
     author = {Hinterleitner, Irena and Kiosak, Volodymyr},
     title = {Special {Einstein{\textquoteright}s} equations on {K\"ahler} manifolds},
     journal = {Archivum mathematicum},
     pages = {333--337},
     year = {2010},
     volume = {46},
     number = {5},
     mrnumber = {2753987},
     zbl = {1249.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a3/}
}
TY  - JOUR
AU  - Hinterleitner, Irena
AU  - Kiosak, Volodymyr
TI  - Special Einstein’s equations on Kähler manifolds
JO  - Archivum mathematicum
PY  - 2010
SP  - 333
EP  - 337
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a3/
LA  - en
ID  - ARM_2010_46_5_a3
ER  - 
%0 Journal Article
%A Hinterleitner, Irena
%A Kiosak, Volodymyr
%T Special Einstein’s equations on Kähler manifolds
%J Archivum mathematicum
%D 2010
%P 333-337
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a3/
%G en
%F ARM_2010_46_5_a3
Hinterleitner, Irena; Kiosak, Volodymyr. Special Einstein’s equations on Kähler manifolds. Archivum mathematicum, Tome 46 (2010) no. 5, pp. 333-337. http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a3/

[1] Eisenhart, L. P.: Non-Riemannian Geometry. Princeton University Press, 1926, Amer. Math. Soc. Colloquium Publications 8 (2000). | MR

[2] Hall, G. S.: Lorentz manifolds and general relativity theory. Differential geometry (Warsaw, 1979), Banach Center Publ. 12 (1984), 47–52. | MR | Zbl

[3] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. 89 (3) (1998), 1334–1353. | DOI | MR

[4] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations. Palacky University Press, Olomouc, 2009. | MR | Zbl

[5] Petrov, A. Z.: New methods in the general theory of relativity. Nauka, Moscow, 1966. | MR

[6] Reboucas, M. J., Santos, J., Teixeira, A. F. F.: Classification of energy momentum tensors in $n\ge 5$ dimensional space-time: a review. Brazil. J. Phys. 34 (2A) (2004), 535–543. | DOI

[7] Schouten, J. A., Struik, D. J.: Einführung in die neueren Methoden der Differentialgeometrie. Groningen, P. Noordhoff, 1935. | Zbl

[8] Stepanov, S. E.: The seven classes of almost symplectic structures. Webs and quasigroups, Tver. Gos. Univ., Tver', 1992, pp. 93–96. | MR | Zbl

[9] Stepanov, S. E.: On a group approach to studying the Einstein and Maxwell equations. Theoret. and Math. Phys. 111 (1) (1997), 419–427. | DOI | MR

[10] Stepanov, S. E., Tsyganok, I. I.: The seven classes of the Einstein equations. arXiv:1001.4673v1.

[11] Yano, K.: Differential geometry of complex and almost comlex spaces. Pergamon Press, 1965.