@article{ARM_2010_46_5_a2,
author = {G\"oteman, M. and Lindstr\"om, U.},
title = {Sigma models with non-commuting complex structures and extended supersymmetry},
journal = {Archivum mathematicum},
pages = {323--331},
year = {2010},
volume = {46},
number = {5},
mrnumber = {2753986},
zbl = {1249.81008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a2/}
}
Göteman, M.; Lindström, U. Sigma models with non-commuting complex structures and extended supersymmetry. Archivum mathematicum, Tome 46 (2010) no. 5, pp. 323-331. http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a2/
[1] Abou–Zeid, M., Hull, C. M.: The geometry of sigma-models with twisted supersymmetry. Nucl. Phys. B 561 (1999), 293–315, [arXiv:hep-th/9907046]. | DOI | MR
[2] Buscher, T., Lindström, U., Roček, M.: New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B 202 (1988), 94–98. | DOI | MR
[3] Gates, S. J., Hull, C. M., Ročcek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B 248 (1) (1984), 157–186. | MR
[4] Göteman, M., Lindström, U.: Pseudo-hyperkahler Geometry and Generalized Kahler Geometry. to be published in Lett. Math. Phys., arXiv:0903.2376 [hep-th].
[5] Göteman, M., Lindström, U., Roček, M., Ryb, I.: Sigma models with off–shell $N=(4,4)$ supersymmetry and noncommuting complex structures. arXiv:0912.4724 [hep-th].
[6] Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford University, 2004, [math/0401221[math-dg]].
[7] Lindström, U.: Generalized $N = (2,2)$ supersymmetric non-linear sigma models. Phys. Lett. B 587 (2004), 216–224, [arXiv:hep-th/0401100]. | DOI | MR
[8] Lindström, U., Ivanov, I. T., Roček, M.: New N=4 superfields and sigma models. Phys. Lett. B 328 (1994), 49–54, [arXiv:hep-th/9401091]. | DOI | MR
[9] Lindström, U., Minasian, R., Tomasiello, A., Zabzine, M.: Generalized complex manifolds and supersymmetry. Commun. Math. Phys. 257 (2005), 235–256. | DOI | MR | Zbl
[10] Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Generalized Kaehler manifolds and off-shell supersymmetry. Commun. Math. Phys. 269 (2007), 833–849. | DOI | MR | Zbl
[11] Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Linearizing generalized Kähler geometry. JHEP 0704 (2007), 28pp., [arXiv:hep-th/0702126]. | MR
[12] Yano, K.: On a structure $f$ satisfying $f^3+f=0$. Tech. Rep. Univ. of Washington 12 (1961).
[13] Yano, K.: On a structure defined by a tensor field of type $(1,1)$ satisfying $f^3+f=0$. Tensor N. S. 14 (1963), 9. | MR