Sigma models with non-commuting complex structures and extended supersymmetry
Archivum mathematicum, Tome 46 (2010) no. 5, pp. 323-331 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We discuss additional supersymmetries for $\mathcal{N}=(2,2)$ supersymmetric non-linear sigma models described by left and right semichiral superfields.
We discuss additional supersymmetries for $\mathcal{N}=(2,2)$ supersymmetric non-linear sigma models described by left and right semichiral superfields.
Classification : 51P05, 81Q60, 81T60
Keywords: supersymmetry; complex geometry
@article{ARM_2010_46_5_a2,
     author = {G\"oteman, M. and Lindstr\"om, U.},
     title = {Sigma models with non-commuting complex structures and extended supersymmetry},
     journal = {Archivum mathematicum},
     pages = {323--331},
     year = {2010},
     volume = {46},
     number = {5},
     mrnumber = {2753986},
     zbl = {1249.81008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a2/}
}
TY  - JOUR
AU  - Göteman, M.
AU  - Lindström, U.
TI  - Sigma models with non-commuting complex structures and extended supersymmetry
JO  - Archivum mathematicum
PY  - 2010
SP  - 323
EP  - 331
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a2/
LA  - en
ID  - ARM_2010_46_5_a2
ER  - 
%0 Journal Article
%A Göteman, M.
%A Lindström, U.
%T Sigma models with non-commuting complex structures and extended supersymmetry
%J Archivum mathematicum
%D 2010
%P 323-331
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a2/
%G en
%F ARM_2010_46_5_a2
Göteman, M.; Lindström, U. Sigma models with non-commuting complex structures and extended supersymmetry. Archivum mathematicum, Tome 46 (2010) no. 5, pp. 323-331. http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a2/

[1] Abou–Zeid, M., Hull, C. M.: The geometry of sigma-models with twisted supersymmetry. Nucl. Phys. B 561 (1999), 293–315, [arXiv:hep-th/9907046]. | DOI | MR

[2] Buscher, T., Lindström, U., Roček, M.: New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B 202 (1988), 94–98. | DOI | MR

[3] Gates, S. J., Hull, C. M., Ročcek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B 248 (1) (1984), 157–186. | MR

[4] Göteman, M., Lindström, U.: Pseudo-hyperkahler Geometry and Generalized Kahler Geometry. to be published in Lett. Math. Phys., arXiv:0903.2376 [hep-th].

[5] Göteman, M., Lindström, U., Roček, M., Ryb, I.: Sigma models with off–shell $N=(4,4)$ supersymmetry and noncommuting complex structures. arXiv:0912.4724 [hep-th].

[6] Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford University, 2004, [math/0401221[math-dg]].

[7] Lindström, U.: Generalized $N = (2,2)$ supersymmetric non-linear sigma models. Phys. Lett. B 587 (2004), 216–224, [arXiv:hep-th/0401100]. | DOI | MR

[8] Lindström, U., Ivanov, I. T., Roček, M.: New N=4 superfields and sigma models. Phys. Lett. B 328 (1994), 49–54, [arXiv:hep-th/9401091]. | DOI | MR

[9] Lindström, U., Minasian, R., Tomasiello, A., Zabzine, M.: Generalized complex manifolds and supersymmetry. Commun. Math. Phys. 257 (2005), 235–256. | DOI | MR | Zbl

[10] Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Generalized Kaehler manifolds and off-shell supersymmetry. Commun. Math. Phys. 269 (2007), 833–849. | DOI | MR | Zbl

[11] Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Linearizing generalized Kähler geometry. JHEP 0704 (2007), 28pp., [arXiv:hep-th/0702126]. | MR

[12] Yano, K.: On a structure $f$ satisfying $f^3+f=0$. Tech. Rep. Univ. of Washington 12 (1961).

[13] Yano, K.: On a structure defined by a tensor field of type $(1,1)$ satisfying $f^3+f=0$. Tensor N. S. 14 (1963), 9. | MR