Fischer decompositions in Euclidean and Hermitean Clifford analysis
Archivum mathematicum, Tome 46 (2010) no. 5, pp. 301-321 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline{\partial }$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline{\partial }_J$, leading to the system of equations $\underline{\partial } f = 0 = \underline{\partial }_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.
Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline{\partial }$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline{\partial }_J$, leading to the system of equations $\underline{\partial } f = 0 = \underline{\partial }_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.
Classification : 30G35
Keywords: Fischer decomposition; Clifford analysis
@article{ARM_2010_46_5_a1,
     author = {Brackx, Fred and de Schepper, Hennie and Sou\v{c}ek, Vladim{\'\i}r},
     title = {Fischer decompositions in {Euclidean} and {Hermitean} {Clifford} analysis},
     journal = {Archivum mathematicum},
     pages = {301--321},
     year = {2010},
     volume = {46},
     number = {5},
     mrnumber = {2753985},
     zbl = {1249.30135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a1/}
}
TY  - JOUR
AU  - Brackx, Fred
AU  - de Schepper, Hennie
AU  - Souček, Vladimír
TI  - Fischer decompositions in Euclidean and Hermitean Clifford analysis
JO  - Archivum mathematicum
PY  - 2010
SP  - 301
EP  - 321
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a1/
LA  - en
ID  - ARM_2010_46_5_a1
ER  - 
%0 Journal Article
%A Brackx, Fred
%A de Schepper, Hennie
%A Souček, Vladimír
%T Fischer decompositions in Euclidean and Hermitean Clifford analysis
%J Archivum mathematicum
%D 2010
%P 301-321
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a1/
%G en
%F ARM_2010_46_5_a1
Brackx, Fred; de Schepper, Hennie; Souček, Vladimír. Fischer decompositions in Euclidean and Hermitean Clifford analysis. Archivum mathematicum, Tome 46 (2010) no. 5, pp. 301-321. http://geodesic.mathdoc.fr/item/ARM_2010_46_5_a1/

[1] Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis – Part I: Complex structure. Compl. Anal. Oper. Theory 1 (3) (2007), 341–365. | DOI | MR

[2] Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis – Part II: Splitting of $h$–monogenic equations. Complex Var. Elliptic Equ. 52 (10–11) (2007), 1063–1079. | MR

[3] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publishers, 1982. | MR | Zbl

[4] Brackx, F., Delanghe, R., Sommen, F.: Differential forms and$/$or multi–vector functions. Cubo 7 (2) (2005), 139–169. | MR | Zbl

[5] Brackx, F., Knock, B. De, Schepper, H. De: A matrix Hilbert transform in Hermitean Clifford analysis. J. Math. Anal. Appl. 344 (2) (2008), 1068–1078. | DOI | MR | Zbl

[6] Brackx, F., Knock, B. De, Schepper, H. De, Sommen, F.: On Cauchy and Martinelli–Bochner integral formulae in Hermitean Clifford analysis. Bull. Braz. Math. Soc. (N.S.) 40 (3) (2009), 395–416. | DOI | MR | Zbl

[7] Brackx, F., Schepper, H. De, Eelbode, D., Souček, V.: The Howe dual pair in Hermitean Clifford analysis. Rev. Mat. Iberoamericana 26 (2) (2010), 449–479. | DOI | MR | Zbl

[8] Brackx, F., Schepper, H. De, Schepper, N. De, Sommen, F.: Hermitean Clifford–Hermite polynomials. Adv. Appl. Clifford Algebras 17 (3) (2007), 311–330. | DOI | MR | Zbl

[9] Brackx, F., Schepper, H. De, Sommen, F.: A theoretical framework for wavelet analysis in a Hermitean Clifford setting. Commun. Pure Appl. Anal. 6 (3) (2007), 549–567. | DOI | MR | Zbl

[10] Brackx, F., Schepper, H. De, Sommen, F.: The Hermitian Clifford analysis toolbox. Adv. Appl. Clifford Algebras 18 (3–4) (2008), 451–487. | DOI | MR | Zbl

[11] Brackx, F., Schepper, H. De, Souček, V.: On the structure of complex Clifford algebra. accepted for publication in Adv. Appl. Clifford Algebras.

[12] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac systems and computational algebra. Birkhäuser, Boston, 2004. | MR | Zbl

[13] Damiano, A., Eelbode, D.: Invariant operators between spaces of $h$–monogenic polynomials. Adv. Appl. Clifford Algebras 19 (2) (2009), 237–251. | DOI | MR | Zbl

[14] Delanghe, R., Lávička, R., Souček, V.: The Fischer decomposition for Hodge–de Rham Systems in Euclidean space. to appear.

[15] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor–valued functions – A function theory for the Dirac operator. Kluwer Academic Publishers, Dordrecht, 1992. | MR

[16] Eelbode, D.: Stirling numbers and Spin–Euler polynomials. Experiment. Math. 16 (1) (2007), 55–66. | DOI | MR | Zbl

[17] Eelbode, D.: Irreducible $\mathfrak{sl}(m)$–modules of Hermitean monogenics. Complex Var. Elliptic Equ. 53 (10) (2008), 975–987. | DOI | MR

[18] Eelbode, D., He, F. L.: Taylor series in Hermitean Clifford analysis. Compl. Anal. Oper. Theory. | DOI | MR

[19] Fischer, E.: Über die Differentiationsprozesse der Algebra. J. für Math. 148 (1917), 1–78.

[20] Gilbert, J., Murray, M.: Clifford Algebra and Dirac Operators in Harmonic Analysis. Cambridge University Press, 1991. | MR

[21] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups. Cambridge University Press, 2003. | MR

[22] Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. J. Wiley & Sons, Chichester, 1997.

[23] Rocha–Chavez, R., Shapiro, M., Sommen, F.: Integral theorems for functions and differential forms in ${\mathbb{C}}_m$. vol. 428, Research Notes in Math., 2002. | MR

[24] Sabadini, I., Sommen, F.: Hermitian Clifford analysis and resolutions. Math. Methods Appl. Sci. 25 (16–18) (2002), 1395–1414. | DOI | MR | Zbl

[25] Sommen, F., Peña, D. Peña: A Martinelli–Bochner formula for the Hermitian Dirac equation. Math. Methods Appl. Sci. 30 (9) (2007), 1049–1055. | DOI | MR | Zbl

[26] Stein, E. M., Weiss, G.: Generalization of the Cauchy–Riemann equations and representations of the rotation group. Amer. J. Math. 90 (1968), 163–196. | DOI | MR | Zbl