Approximate maps, filter monad, and a representation of localic maps
Archivum mathematicum, Tome 46 (2010) no. 4, pp. 285-298 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A covariant representation of the category of locales by approximate maps (mimicking a natural representation of continuous maps between spaces in which one approximates points by small open sets) is constructed. It is shown that it can be given a Kleisli shape, as a part of a more general Kleisli representation of meet preserving maps. Also, we present the spectrum adjunction in this approximation setting.
A covariant representation of the category of locales by approximate maps (mimicking a natural representation of continuous maps between spaces in which one approximates points by small open sets) is constructed. It is shown that it can be given a Kleisli shape, as a part of a more general Kleisli representation of meet preserving maps. Also, we present the spectrum adjunction in this approximation setting.
Classification : 06D22, 18C20
Keywords: frames (locales); localic maps; approximation; Kleisli representation
@article{ARM_2010_46_4_a4,
     author = {Banaschewski, Bernhard and Pultr, Ale\v{s}},
     title = {Approximate maps, filter monad, and a representation of localic maps},
     journal = {Archivum mathematicum},
     pages = {285--298},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2754066},
     zbl = {1240.06038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a4/}
}
TY  - JOUR
AU  - Banaschewski, Bernhard
AU  - Pultr, Aleš
TI  - Approximate maps, filter monad, and a representation of localic maps
JO  - Archivum mathematicum
PY  - 2010
SP  - 285
EP  - 298
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a4/
LA  - en
ID  - ARM_2010_46_4_a4
ER  - 
%0 Journal Article
%A Banaschewski, Bernhard
%A Pultr, Aleš
%T Approximate maps, filter monad, and a representation of localic maps
%J Archivum mathematicum
%D 2010
%P 285-298
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a4/
%G en
%F ARM_2010_46_4_a4
Banaschewski, Bernhard; Pultr, Aleš. Approximate maps, filter monad, and a representation of localic maps. Archivum mathematicum, Tome 46 (2010) no. 4, pp. 285-298. http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a4/

[1] Banaschewski, B., Pultr, A.: Cauchy points of uniform and nearness frames. Quaestiones Math. 19 (1–2) (1996), 101–127. | DOI | MR | Zbl

[2] Banaschewski, B., Pultr, A.: A general view of approximation. Appl. Categ. Structures 14 (2006), 165–190. | DOI | MR | Zbl

[3] Carathéodory, C.: Über die Begrenzung einfach zusamenhängender Gebiete. Math. Ann. 73 (3) (1913), 323–370. | DOI | MR

[4] Escardó, M. Hötzel: Injective spaces in the filter monad. Department of Computing, Edinburg University, preprint 1997.

[5] Grothendieck, A.: Éléments de géométrie algebrique. I. Le langage des schémas. no. 4, Inst. Hautes Études Sci. Publ. Math., 1960. | MR | Zbl

[6] Hausdorff, F.: Grundzüge der Mengenlehre. Veit & Co., Leipzig, 1914. | MR

[7] Johnstone, P. T.: Stone spaces. Cambridge Stud. Adv. Math. 3, 1982. | MR | Zbl

[8] Joyal, A., Tierney, M.: An extension of the Galois theory of Grothendieck. Mem. Amer. Math. Soc. 51 (309) (1984), 71 pp. | MR | Zbl

[9] Kelley, J. L.: General Topology. D. Van Nostrand Company, Inc., Toronto–New York–London, 1955. | MR | Zbl

[10] Lane, S. Mac: Categories for the Working Mathematician. Springer–Verlag, New York, 1971. | MR

[11] Manes, E.: Algebraic Theories. Grad. Texts in Math. 26 (1976), 356 pp. | MR | Zbl

[12] Picado, J., Pultr, A.: Sublocale sets and sublocale lattices. Arch. Math. (Brno) 42 (4) (2006), 409–418. | MR | Zbl

[13] Picado, J., Pultr, A.: Locales treated mostly in a covariant way. vol. 41, Textos Mat. Ser. B, 2008. | MR | Zbl

[14] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 324 (1972), 507–530. | MR | Zbl

[15] Pultr, A.: Handbook of Algebra. vol. 3, ch. Frames, pp. 791–858, Elsevier, 2003. | MR