Keywords: rapidly varying function; rapidly varying sequence; Karamata function; time scale; second order dynamic equation
@article{ARM_2010_46_4_a3,
author = {V{\'\i}tovec, Ji\v{r}{\'\i}},
title = {Theory of rapid variation on time scales with applications to dynamic equations},
journal = {Archivum mathematicum},
pages = {263--284},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2754065},
zbl = {1240.26070},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a3/}
}
Vítovec, Jiří. Theory of rapid variation on time scales with applications to dynamic equations. Archivum mathematicum, Tome 46 (2010) no. 4, pp. 263-284. http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a3/
[1] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge Univ. Press, 1987. | MR | Zbl
[2] Bohner, M., Peterson, A. C.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001. | MR | Zbl
[3] Bojanić, R., Seneta, E.: A unified theory of regularly varying sequences. Math. Z. 134 (1973), 91–106. | DOI | MR
[4] Djurčić, D., Kočinac, L. D. R, Žižović, M. R.: Some properties of rapidly varying sequences. J. Math. Anal. Appl. 327 (2007), 1297–1306. | DOI | MR | Zbl
[5] Djurčić, D., Torgašev, A.: On the Seneta sequences. Acta Math. Sinica 22 (2006), 689–692. | DOI | MR | Zbl
[6] Došlý, O., Řehák, P.: Half-linear Differential Equations. North Holland Mathematics Studies Series, Elsevier, 2005. | MR | Zbl
[7] Galambos, J., Seneta, E.: Regularly varying sequences. Proc. Amer. Math. Soc. 41 (1973), 110–116. | DOI | MR | Zbl
[8] Geluk, J. L., de Haan, L.: Regular Variation, Extensions and Tauberian Theorems. CWI Tract 40, Amsterdam, 1987. | MR | Zbl
[9] Hilger, S.: Ein Maß kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität of Würzburg, 1988.
[10] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. | DOI | MR | Zbl
[11] Karamata, J.: Sur certain “Tauberian theorems” de M. M. Hardy et Littlewood. Mathematica (Cluj) 3 (1930), 33–48.
[12] Karamata, J.: Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France 61 (1933), 55–62. | MR | Zbl
[13] Marić, V.: Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin-Heidelberg-New York, 2000. | DOI | MR
[14] Marić, V., Tomić, M.: A classification of solutions of second order linear differential equations by means of regularly varying functions. Publ. Inst. Math. (Beograd) (N.S.) 48 (1990), 199–207. | MR
[15] Matucci, S., Řehák, P.: Regularly varying sequences and second-order difference equations. J. Differ. Equations Appl. 14 (2008), 17–30. | DOI | MR | Zbl
[16] Matucci, S., Řehák, P.: Second order linear difference equations and Karamata sequences. J. Differ. Equations Appl. 3 (2008), 277–288. | MR
[17] Matucci, S., Řehák, P.: Rapidly varying decreasing solutions of half-linear difference equations. Math. Comput. Modelling 49 (2009), 1692–1699. | DOI | MR | Zbl
[18] Řehák, P.: Half-linear dynamic equations on time scales: IVP and oscillatory properties. Nonlinear Funct. Anal. Appl. 7 (2002), 361–404. | MR | Zbl
[19] Řehák, P.: Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 5 (2005), 495–507. | MR | Zbl
[20] Řehák, P.: Regular variation on time scales and dynamic equations. Aust. J. Math. Anal. Appl. 5 (2008), 1–10. | MR | Zbl
[21] Řehák, P., Vítovec, J.: $q$-Karamata functions and second order $q$-difference equations. submitted.
[22] Řehák, P., Vítovec, J.: $q$-regular variation and $q$-difference equations. J. Phys. A: Math. Theor. 41 (2008), 495203, 1–10. | DOI | MR | Zbl
[23] Řehák, P., Vítovec, J.: Regularly varying decreasing solutions of half-linear dynamic equations. Proceedings of the 12th ICDEA, Lisabon, 2008.
[24] Řehák, P., Vítovec, J.: Regular variation on measure chains. Nonlinear Analysis TMA 72 (2010), 439–448. | DOI | MR | Zbl
[25] Seneta, E.: Regularly Varying Functions. Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR | Zbl
[26] Weissman, I.: A note on Bojanic-Seneta theory of regularly varying sequences. Math. Z. 151 (1976), 29–30. | DOI | MR