Theory of rapid variation on time scales with applications to dynamic equations
Archivum mathematicum, Tome 46 (2010) no. 4, pp. 263-284 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note that these results are new even for the linear (dynamic) case and for the half-linear discrete case. In the third part of this paper we give a complete characterization of all positive solutions of linear dynamic equations and of all positive decreasing solutions of half-linear dynamic equations with respect to their regularly or rapidly varying behavior. The paper is finished by concluding comments and open problems of these themes.
In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note that these results are new even for the linear (dynamic) case and for the half-linear discrete case. In the third part of this paper we give a complete characterization of all positive solutions of linear dynamic equations and of all positive decreasing solutions of half-linear dynamic equations with respect to their regularly or rapidly varying behavior. The paper is finished by concluding comments and open problems of these themes.
Classification : 26A12, 26A99, 26E70, 34C10, 34N05
Keywords: rapidly varying function; rapidly varying sequence; Karamata function; time scale; second order dynamic equation
@article{ARM_2010_46_4_a3,
     author = {V{\'\i}tovec, Ji\v{r}{\'\i}},
     title = {Theory of rapid variation on time scales with applications to dynamic equations},
     journal = {Archivum mathematicum},
     pages = {263--284},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2754065},
     zbl = {1240.26070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a3/}
}
TY  - JOUR
AU  - Vítovec, Jiří
TI  - Theory of rapid variation on time scales with applications to dynamic equations
JO  - Archivum mathematicum
PY  - 2010
SP  - 263
EP  - 284
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a3/
LA  - en
ID  - ARM_2010_46_4_a3
ER  - 
%0 Journal Article
%A Vítovec, Jiří
%T Theory of rapid variation on time scales with applications to dynamic equations
%J Archivum mathematicum
%D 2010
%P 263-284
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a3/
%G en
%F ARM_2010_46_4_a3
Vítovec, Jiří. Theory of rapid variation on time scales with applications to dynamic equations. Archivum mathematicum, Tome 46 (2010) no. 4, pp. 263-284. http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a3/

[1] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge Univ. Press, 1987. | MR | Zbl

[2] Bohner, M., Peterson, A. C.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001. | MR | Zbl

[3] Bojanić, R., Seneta, E.: A unified theory of regularly varying sequences. Math. Z. 134 (1973), 91–106. | DOI | MR

[4] Djurčić, D., Kočinac, L. D. R, Žižović, M. R.: Some properties of rapidly varying sequences. J. Math. Anal. Appl. 327 (2007), 1297–1306. | DOI | MR | Zbl

[5] Djurčić, D., Torgašev, A.: On the Seneta sequences. Acta Math. Sinica 22 (2006), 689–692. | DOI | MR | Zbl

[6] Došlý, O., Řehák, P.: Half-linear Differential Equations. North Holland Mathematics Studies Series, Elsevier, 2005. | MR | Zbl

[7] Galambos, J., Seneta, E.: Regularly varying sequences. Proc. Amer. Math. Soc. 41 (1973), 110–116. | DOI | MR | Zbl

[8] Geluk, J. L., de Haan, L.: Regular Variation, Extensions and Tauberian Theorems. CWI Tract 40, Amsterdam, 1987. | MR | Zbl

[9] Hilger, S.: Ein Maß kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität of Würzburg, 1988.

[10] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. | DOI | MR | Zbl

[11] Karamata, J.: Sur certain “Tauberian theorems” de M. M. Hardy et Littlewood. Mathematica (Cluj) 3 (1930), 33–48.

[12] Karamata, J.: Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France 61 (1933), 55–62. | MR | Zbl

[13] Marić, V.: Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin-Heidelberg-New York, 2000. | DOI | MR

[14] Marić, V., Tomić, M.: A classification of solutions of second order linear differential equations by means of regularly varying functions. Publ. Inst. Math. (Beograd) (N.S.) 48 (1990), 199–207. | MR

[15] Matucci, S., Řehák, P.: Regularly varying sequences and second-order difference equations. J. Differ. Equations Appl. 14 (2008), 17–30. | DOI | MR | Zbl

[16] Matucci, S., Řehák, P.: Second order linear difference equations and Karamata sequences. J. Differ. Equations Appl. 3 (2008), 277–288. | MR

[17] Matucci, S., Řehák, P.: Rapidly varying decreasing solutions of half-linear difference equations. Math. Comput. Modelling 49 (2009), 1692–1699. | DOI | MR | Zbl

[18] Řehák, P.: Half-linear dynamic equations on time scales: IVP and oscillatory properties. Nonlinear Funct. Anal. Appl. 7 (2002), 361–404. | MR | Zbl

[19] Řehák, P.: Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 5 (2005), 495–507. | MR | Zbl

[20] Řehák, P.: Regular variation on time scales and dynamic equations. Aust. J. Math. Anal. Appl. 5 (2008), 1–10. | MR | Zbl

[21] Řehák, P., Vítovec, J.: $q$-Karamata functions and second order $q$-difference equations. submitted.

[22] Řehák, P., Vítovec, J.: $q$-regular variation and $q$-difference equations. J. Phys. A: Math. Theor. 41 (2008), 495203, 1–10. | DOI | MR | Zbl

[23] Řehák, P., Vítovec, J.: Regularly varying decreasing solutions of half-linear dynamic equations. Proceedings of the 12th ICDEA, Lisabon, 2008.

[24] Řehák, P., Vítovec, J.: Regular variation on measure chains. Nonlinear Analysis TMA 72 (2010), 439–448. | DOI | MR | Zbl

[25] Seneta, E.: Regularly Varying Functions. Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR | Zbl

[26] Weissman, I.: A note on Bojanic-Seneta theory of regularly varying sequences. Math. Z. 151 (1976), 29–30. | DOI | MR