Keywords: content algebra; few zero-divisors; McCoy’s property; minimal prime; property (A); primal ring; zero-divisor graph
@article{ARM_2010_46_4_a1,
author = {Nasehpour, Peyman},
title = {Zero-divisors of content algebras},
journal = {Archivum mathematicum},
pages = {237--249},
year = {2010},
volume = {46},
number = {4},
mrnumber = {2754063},
zbl = {1240.13002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a1/}
}
Nasehpour, Peyman. Zero-divisors of content algebras. Archivum mathematicum, Tome 46 (2010) no. 4, pp. 237-249. http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a1/
[1] Anderson, D. D., Kan, B. G.: Content formulas for polynomials and power series and complete integral closure. J. Algebra 181 (1996), 82–94. | DOI | MR
[2] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434–447. | DOI | MR | Zbl
[3] Arnold, J. T., Gilmer, R.: On the content of polynomials. Proc. Amer. Math. Soc. 40 (1970), 556–562. | DOI | MR
[4] Axtell, M., Coykendall, J., Stickles, J.: Zero-divisor graphs of polynomials and power series over commutative rings. Comm. Algebra 6 (2005), 2043–2050. | DOI | MR | Zbl
[5] Bruns, W., Guerrieri, A.: The Dedekind-Mertens formula and determinantal rings. Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. | DOI | MR | Zbl
[6] Dauns, J.: Primal modules. Comm. Algebra 25 (8) (1997), 2409–2435. | DOI | MR | Zbl
[7] Davis, E.: Overrings of commutative rings II. Integrally closed overrings. Trans. Amer. Math. Soc. 110 (1964), 196–212. | DOI | MR | Zbl
[8] Eakin, P., Silver, J.: Rings which are almost polynomial rings. Trans. Amer. Math. Soc. 174 (1974), 425–449. | DOI | MR
[9] Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York, 1972. | MR | Zbl
[10] Gilmer, R.: Commutative Semigroup Rings. The University of Chicago Press, 1984. | MR | Zbl
[11] Heinzer, W., Huneke, C.: The Dedekind-Mertens Lemma and the content of polynomials. Proc. Amer. Math. Soc. 126 (1998), 1305–1309. | DOI | MR
[12] Huckaba, J. A.: Commutative Rings with Zero Divisors. Marcel Dekker, 1988. | MR | Zbl
[13] Huckaba, J. A., Keller, J. M.: Annihilation of ideals in commutative rings. Pacific J. Math. 83 (1979), 375–379. | DOI | MR | Zbl
[14] Kaplansky, I.: Commutative Rings. Allyn and Bacon, Boston, 1970. | MR | Zbl
[15] Loper, K. A., Roitman, M.: The content of a Gaussian polynomial is invertible. Proc. Amer. Math. Soc. 133 (2005), 1267–1271. | DOI | MR | Zbl
[16] Lucas, T. G.: The diameter of a zero divisor graph. J. Algebra 301 (2006), 174–193. | DOI | MR | Zbl
[17] McCoy, N. H.: Remarks on divisors of zero. Amer. Math. Monthly 49 (1942), 286–29. | DOI | MR | Zbl
[18] Northcott, D. G.: A generalization of a theorem on the content of polynomials. Proc. Camb. Philos. Soc. 55 (1959), 282–288. | DOI | MR | Zbl
[19] Ohm, J., Rush, D. E.: Content modules and algebras. Math. Scand. 31 (1972), 49–68. | MR | Zbl
[20] Rush, D. E.: Content algebras. Canad. Math. Bull. 21 (3) (1978), 329–334. | DOI | MR | Zbl
[21] Tsang, H.: Gauss’ Lemma. University of Chicago, Chicago, 1965, dissertation. | MR
[22] Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York, 1958. | MR | Zbl