Zero-divisors of content algebras
Archivum mathematicum, Tome 46 (2010) no. 4, pp. 237-249 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.
In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.
Classification : 05C25, 05C99, 13A15, 13A99, 13B25
Keywords: content algebra; few zero-divisors; McCoy’s property; minimal prime; property (A); primal ring; zero-divisor graph
@article{ARM_2010_46_4_a1,
     author = {Nasehpour, Peyman},
     title = {Zero-divisors of content algebras},
     journal = {Archivum mathematicum},
     pages = {237--249},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2754063},
     zbl = {1240.13002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a1/}
}
TY  - JOUR
AU  - Nasehpour, Peyman
TI  - Zero-divisors of content algebras
JO  - Archivum mathematicum
PY  - 2010
SP  - 237
EP  - 249
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a1/
LA  - en
ID  - ARM_2010_46_4_a1
ER  - 
%0 Journal Article
%A Nasehpour, Peyman
%T Zero-divisors of content algebras
%J Archivum mathematicum
%D 2010
%P 237-249
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a1/
%G en
%F ARM_2010_46_4_a1
Nasehpour, Peyman. Zero-divisors of content algebras. Archivum mathematicum, Tome 46 (2010) no. 4, pp. 237-249. http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a1/

[1] Anderson, D. D., Kan, B. G.: Content formulas for polynomials and power series and complete integral closure. J. Algebra 181 (1996), 82–94. | DOI | MR

[2] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434–447. | DOI | MR | Zbl

[3] Arnold, J. T., Gilmer, R.: On the content of polynomials. Proc. Amer. Math. Soc. 40 (1970), 556–562. | DOI | MR

[4] Axtell, M., Coykendall, J., Stickles, J.: Zero-divisor graphs of polynomials and power series over commutative rings. Comm. Algebra 6 (2005), 2043–2050. | DOI | MR | Zbl

[5] Bruns, W., Guerrieri, A.: The Dedekind-Mertens formula and determinantal rings. Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. | DOI | MR | Zbl

[6] Dauns, J.: Primal modules. Comm. Algebra 25 (8) (1997), 2409–2435. | DOI | MR | Zbl

[7] Davis, E.: Overrings of commutative rings II. Integrally closed overrings. Trans. Amer. Math. Soc. 110 (1964), 196–212. | DOI | MR | Zbl

[8] Eakin, P., Silver, J.: Rings which are almost polynomial rings. Trans. Amer. Math. Soc. 174 (1974), 425–449. | DOI | MR

[9] Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York, 1972. | MR | Zbl

[10] Gilmer, R.: Commutative Semigroup Rings. The University of Chicago Press, 1984. | MR | Zbl

[11] Heinzer, W., Huneke, C.: The Dedekind-Mertens Lemma and the content of polynomials. Proc. Amer. Math. Soc. 126 (1998), 1305–1309. | DOI | MR

[12] Huckaba, J. A.: Commutative Rings with Zero Divisors. Marcel Dekker, 1988. | MR | Zbl

[13] Huckaba, J. A., Keller, J. M.: Annihilation of ideals in commutative rings. Pacific J. Math. 83 (1979), 375–379. | DOI | MR | Zbl

[14] Kaplansky, I.: Commutative Rings. Allyn and Bacon, Boston, 1970. | MR | Zbl

[15] Loper, K. A., Roitman, M.: The content of a Gaussian polynomial is invertible. Proc. Amer. Math. Soc. 133 (2005), 1267–1271. | DOI | MR | Zbl

[16] Lucas, T. G.: The diameter of a zero divisor graph. J. Algebra 301 (2006), 174–193. | DOI | MR | Zbl

[17] McCoy, N. H.: Remarks on divisors of zero. Amer. Math. Monthly 49 (1942), 286–29. | DOI | MR | Zbl

[18] Northcott, D. G.: A generalization of a theorem on the content of polynomials. Proc. Camb. Philos. Soc. 55 (1959), 282–288. | DOI | MR | Zbl

[19] Ohm, J., Rush, D. E.: Content modules and algebras. Math. Scand. 31 (1972), 49–68. | MR | Zbl

[20] Rush, D. E.: Content algebras. Canad. Math. Bull. 21 (3) (1978), 329–334. | DOI | MR | Zbl

[21] Tsang, H.: Gauss’ Lemma. University of Chicago, Chicago, 1965, dissertation. | MR

[22] Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York, 1958. | MR | Zbl