Module $(\varphi,\psi)$-amenability of Banach algebras
Archivum mathematicum, Tome 46 (2010) no. 4, pp. 227-235 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $S$ be an inverse semigroup with the set of idempotents $E$ and $S/\approx$ be an appropriate group homomorphic image of $S$. In this paper we find a one-to-one correspondence between two cohomology groups of the group algebra $\ell ^1(S)$ and the semigroup algebra $ {\ell ^{1}}(S/\approx )$ with coefficients in the same space. As a consequence, we prove that $S$ is amenable if and only if $S/\approx $ is amenable. This could be considered as the same result of Duncan and Namioka [5] with another method which asserts that the inverse semigroup $S$ is amenable if and only if the group homomorphic image $S/\sim $ is amenable, where $\sim $ is a congruence relation on $S$.
Let $S$ be an inverse semigroup with the set of idempotents $E$ and $S/\approx$ be an appropriate group homomorphic image of $S$. In this paper we find a one-to-one correspondence between two cohomology groups of the group algebra $\ell ^1(S)$ and the semigroup algebra $ {\ell ^{1}}(S/\approx )$ with coefficients in the same space. As a consequence, we prove that $S$ is amenable if and only if $S/\approx $ is amenable. This could be considered as the same result of Duncan and Namioka [5] with another method which asserts that the inverse semigroup $S$ is amenable if and only if the group homomorphic image $S/\sim $ is amenable, where $\sim $ is a congruence relation on $S$.
Classification : 43A07, 46H25
Keywords: Banach modules; module derivation; module amenability; inverse semigroup
@article{ARM_2010_46_4_a0,
     author = {Bodaghi, Abasalt},
     title = {Module $(\varphi,\psi)$-amenability of {Banach} algebras},
     journal = {Archivum mathematicum},
     pages = {227--235},
     year = {2010},
     volume = {46},
     number = {4},
     mrnumber = {2754062},
     zbl = {1240.43001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a0/}
}
TY  - JOUR
AU  - Bodaghi, Abasalt
TI  - Module $(\varphi,\psi)$-amenability of Banach algebras
JO  - Archivum mathematicum
PY  - 2010
SP  - 227
EP  - 235
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a0/
LA  - en
ID  - ARM_2010_46_4_a0
ER  - 
%0 Journal Article
%A Bodaghi, Abasalt
%T Module $(\varphi,\psi)$-amenability of Banach algebras
%J Archivum mathematicum
%D 2010
%P 227-235
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a0/
%G en
%F ARM_2010_46_4_a0
Bodaghi, Abasalt. Module $(\varphi,\psi)$-amenability of Banach algebras. Archivum mathematicum, Tome 46 (2010) no. 4, pp. 227-235. http://geodesic.mathdoc.fr/item/ARM_2010_46_4_a0/

[1] Amini, M.: Module amenability for semigroup algebras. Semigroup Forum 69 (2004), 243–254. | DOI | MR | Zbl

[2] Amini, M., Bodaghi, A., Bagha, D. Ebrahimi: Module amenability of the second dual and module topological center of semigroup algebras. Semigroup Forum 80 (2010), 302–312. | DOI | MR

[3] Amioni, M.: Corrigendum, Module amenability for semigroup algebras. Semigroup Forum 72 (2006), 493. | MR

[4] Dale, H. G.: Banach Algebra and Automatic Continuity. Oxford university Press, 2000.

[5] Duncan, J., Namioka, I.: Amenability of inverse semigroups and their semigroup algebra. Proc. Roy. Soc. Edinburgh Sect. A 80 (3–4) (1978), 309–321. | MR

[6] Howie, J. M.: An Introduction to Semigroup Theory. London Academic Press, 1976. | MR | Zbl

[7] Johnson, B. E.: Cohomology in Banach algebras. Mem. Amer. Math. Soc. 127 (1972), iii+96 pp. | MR | Zbl

[8] Moslehian, M. S., Motlagh, A. N.: Some notes on $(\sigma ,\tau )$-amenability of Banach algebras. Stud. Univ. Babeş-Bolyai Math. 53 (3) (2008), 57–68. | MR | Zbl

[9] Munn, W. D.: A class of irreducible matrix representations of an arbitrary inverse semigroup. Proc. Glasgow Math. Assoc. 5 (1961), 41–48. | MR | Zbl

[10] Paterson, A. L. T.: Groupoids, Inverse Semigroups, and Their Operator Algebras. Birkhäuser, Boston, 1999. | MR | Zbl

[11] Rezavand, R., Amini, M., Sattari, M. H., Bagh, D. Ebrahimi: Module Arens regularity for semigroup algebras. Semigroup Forum 77 (2008), 300–305. | DOI | MR

[12] Wilde, C., Argabright, L.: Invariant means and factor semigroup. Proc. Amer. Math. Soc. 18 (1967), 226–228. | DOI | MR