Transversal biwave maps
Archivum mathematicum, Tome 46 (2010) no. 3, pp. 211-226 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if $f$ is a transversal biwave map satisfying certain condition, then $f$ is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.
In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if $f$ is a transversal biwave map satisfying certain condition, then $f$ is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.
Classification : 53C12, 58E20, 58G11
Keywords: transversal bi-energy; transversal biwave field; transversal biwave map
@article{ARM_2010_46_3_a4,
     author = {Chiang, Yuan-Jen and Wolak, Robert A.},
     title = {Transversal biwave maps},
     journal = {Archivum mathematicum},
     pages = {211--226},
     year = {2010},
     volume = {46},
     number = {3},
     mrnumber = {2735907},
     zbl = {1240.58009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a4/}
}
TY  - JOUR
AU  - Chiang, Yuan-Jen
AU  - Wolak, Robert A.
TI  - Transversal biwave maps
JO  - Archivum mathematicum
PY  - 2010
SP  - 211
EP  - 226
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a4/
LA  - en
ID  - ARM_2010_46_3_a4
ER  - 
%0 Journal Article
%A Chiang, Yuan-Jen
%A Wolak, Robert A.
%T Transversal biwave maps
%J Archivum mathematicum
%D 2010
%P 211-226
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a4/
%G en
%F ARM_2010_46_3_a4
Chiang, Yuan-Jen; Wolak, Robert A. Transversal biwave maps. Archivum mathematicum, Tome 46 (2010) no. 3, pp. 211-226. http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a4/

[1] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Internat. J. Math. 12 (8) (2001), 867–876. | DOI | MR

[2] Caddeo, R., Montaldo, S., Piu, P.: Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. Rend. Sem. Mat. Univ. Politec. Torino 62 (3) (2004), 265–278. | MR

[3] Chang, Sun-Yung A., Wang, L., Yang, P. C.: Regularity of biharmonic maps. Comm. Pure Appl. Math. 52 (9) (1999), 1099–1111. | DOI | MR

[4] Chiang, Y. J.: Biwave maps into manifolds. Internat. J. Math. Math. Sci. Article ID 104274 (2009), 1–14. | DOI | MR | Zbl

[5] Chiang, Y. J., Sun, H.: 2-harmonic totally real submanifolds in a complex projective space. Bull. Inst. Math. Acad. Sinica 27 (2) (1999), 99–107. | MR | Zbl

[6] Chiang, Y. J., Sun, H.: Biharmonic Maps on V-Manifolds. Internat. J. Math. Math. Sci. 27 (2001), 477–484. | DOI | MR | Zbl

[7] Chiang, Y. J., Wolak, R.: Transversally biharmonic maps between foliated Riemannian manifolds. Internat. J. Math. 19 (9) (2008), 1–16. | DOI | MR | Zbl

[8] Chiang, Y. J., Yang, Y. H.: Exponential wave maps. J. Geom. Phys. 57 (2007), 2521–2532. | DOI | MR | Zbl

[9] Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc. 10 (1978), 1–68. | DOI | MR | Zbl

[10] Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. London Math. Soc. 20 (1988), 385–524. | DOI | MR | Zbl

[11] Eells, J., Sampson, J. H.: Harmonic mappings between Riemannian manifolds. Amer. J. Math. 86 (1964), 109–160. | DOI | MR

[12] Eells, J., Verjovsky, A.: Harmonic and Riemannian foliations. Bol. Soc. Mat. Mexicana (3) 4 (1998), 1–12. | MR | Zbl

[13] Evans, L. C.: Partial Differential Equations. vol. 19, Grad. Stud. Math., 1998. | Zbl

[14] Hilbert, D.: Die Grundlagen der Physik. Math. Ann. 92 (1924), 1–32. | DOI | MR

[15] Jiang, G. Y.: 2-harmonic maps between Riemannian manifolds. Annals of Math., China 7A (4) (1986), 389–402. | MR

[16] Jiang, G. Y.: The 2-harmonic isometric immersions between Riemannian manifolds. Annals of Math., China 7A (2) (1986), 130–144. | MR

[17] Jiang, G. Y.: the conservation law of 2-harmonic maps between Riemannian manifolds. Acta Math. Sinica 30 (2) (1987), 220–225. | MR

[18] Kacimi, A. El, Gomez, E. Gallego: Foliated harmonic maps. Illinois J. Math. 40 (1996), 115–122. | MR

[19] Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Duke Math. J. 81 (1995), 99–133. | DOI | MR | Zbl

[20] Klainerman, S., Machedon, M.: On the optimal local regularity for gauge fields theories. Differential Integral Equations 10 (6) (1997), 1019–1030. | MR

[21] Konderak, J. J., Wolak, R.: Transversally harmonic maps between manifolds with Riemannian foliations. Quart. J. Math. Oxford Ser. (2) 54 (Part 3) (2003), 335–354. | DOI | MR | Zbl

[22] Konderak, J. J., Wolak, R.: Some remarks on transversally harmonic maps. Glasgow J. Math. 50 (1) (2008), 1–16. | MR | Zbl

[23] Lopez, J. A., Masa, X. M.: Morphisms between complete Riemannian pseudogroups. Topology Appl. 155 (2008), 544–604. | DOI | MR | Zbl

[24] Loubeau, E., Oniciuc, C.: On the biharmonic and harmonic indices of the Hopf map. Trans. Amer. Math. Soc. 359 (11) (2007), 5239–5256. | DOI | MR | Zbl

[25] Molino, P.: Riemannian Foliations. Birkhauser, Bassel, 1988. | MR | Zbl

[26] Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina 47 (2006), 1–22. | MR | Zbl

[27] Nahmod, A., Stefanov, A., Uhlenbeck, K.: On the well-posedness of the wave map problem in high dimensions. Comm. Anal. Geom. 11 (1) (2003), 49–83. | MR | Zbl

[28] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, 1983. | MR

[29] Shatah, J., Struwe, M.: Geometric wave equations. Courant Lecture Notes in Math., 2 (2000), viii+153 pp. | MR | Zbl

[30] Shatah, J., Struwe, M.: The Cauchy problem for wave maps. Int. Math. Res. Not. 11 (2002), 555–571. | DOI | MR | Zbl

[31] Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Internat. Math. Res. Notices 6 (2001), 299–328. | MR | Zbl

[32] Tao, T.: Global regularity of wave maps. II. Small energy in two dimension. Comm. Math. Phys. 224 (2001), 443–544. | DOI | MR

[33] Tataru, D.: The wave maps equations. Bull. Amer. Math. Soc. 41 (2004), 185–204. | DOI | MR

[34] Tataru, D.: Rough solutions for the wave maps equation. Amer. J. Math. 127 (5) (2005), 293–377. | DOI | MR

[35] Tondeur, P.: Geometry of Foliation. Birkhauser, Bassel, 1997. | MR

[36] Wang, C.: Biharmonic maps from $R^4$in to a Riemannian manifold. Math. Z. 247 (2004), 65–87. | DOI | MR

[37] Wolak, R.: Foliated and associated geometric structures on foliated manifolds. Ann. Fac. Sci. Toulouse Math. (6) 10 (1989), 337–360. | DOI | MR | Zbl