Keywords: singular set; semi-linear elliptic equation; Ginzburg-Landau system
@article{ARM_2010_46_3_a2,
author = {Aramaki, Junichi},
title = {Estimate of the {Hausdorff} measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity},
journal = {Archivum mathematicum},
pages = {185--201},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2735905},
zbl = {1240.82013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a2/}
}
TY - JOUR AU - Aramaki, Junichi TI - Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity JO - Archivum mathematicum PY - 2010 SP - 185 EP - 201 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a2/ LA - en ID - ARM_2010_46_3_a2 ER -
%0 Journal Article %A Aramaki, Junichi %T Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity %J Archivum mathematicum %D 2010 %P 185-201 %V 46 %N 3 %U http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a2/ %G en %F ARM_2010_46_3_a2
Aramaki, Junichi. Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity. Archivum mathematicum, Tome 46 (2010) no. 3, pp. 185-201. http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a2/
[1] Aramaki, J.: On an elliptic model with general nonlinearity associated with superconductivity. Int. J. Differ. Equ. Appl. 10 (4) (2006), 449–466. | MR
[2] Aramaki, J.: On an elliptic problem with general nonlinearity associated with superheating field in the theory of superconductivity. Int. J. Pure Appl. Math. 28 (1) (2006), 125–148. | MR | Zbl
[3] Aramaki, J.: A remark on a semi-linear elliptic problem with the de Gennes boundary condition associated with superconductivity. Int. J. Pure Appl. Math. 50 (1) (2008), 97–110. | MR
[4] Aramaki, J.: Nodal sets and singular sets of solutions for semi-linear elliptic equations associated with superconductivity. Far East J. Math. Sci. 38 (2) (2010), 137–179. | MR | Zbl
[5] Aramaki, J., Nurmuhammad, A., Tomioka, S.: A note on a semi-linear elliptic problem with the de Gennes boundary condition associated with superconductivity. Far East J. Math. Sci. 32 (2) (2009), 153–167. | MR | Zbl
[6] Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36 (1957), 235–249. | MR | Zbl
[7] Elliot, C. M., Matano, H., Tang, Q.: Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity. European J. Appl. Math. 5 (1994), 431–448. | MR
[8] Federer, H.: Geometric Measure Theory. Springer, Berlin, 1969. | MR | Zbl
[9] Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, $A_p$ weights and unique continuation. Indiana Univ. Math. J. 35 (2) (1986), 245–268. | DOI | MR
[10] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Springer, New York, 1983. | MR | Zbl
[11] Han, Q.: Singular sets of solutions to elliptic equations. Indiana Univ. Math. J. 43 (1994), 983–1002. | DOI | MR | Zbl
[12] Han, Q.: Schauder estimates for elliptic operators with applications to nodal set. J. Geom. Anal. 10 (3) (2000), 455–480. | DOI | MR
[13] Han, Q., Hardt, R., Lin, F.-G.: Geometric measure of singular sets of elliptic equations. Comm. Pure Appl. Math. 51 (1998), 1425–1443. | DOI | MR | Zbl
[14] Hardt, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Nadirashivili, N.: Critical sets of solutions to elliptic equations. J. Differential Geom. 51 (1999), 359–373. | MR
[15] Helffer, B., Mohamed, A.: Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138 (1996), 40–81. | DOI | MR | Zbl
[16] Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185 (2001), 604–680. | DOI | MR | Zbl
[17] Lu, K., Pan, X.-B.: Estimates of upper critical field for the Ginzburg-Landau equations of superconductivity. Physica D 127 (1999), 73–104. | DOI | MR
[18] Lu, K., Pan, X.-B.: Surface nucleation of supeconductivity in $3$-dimension. J. Differential Equations 168 (2000), 386–452. | DOI | MR
[19] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, 1995. | MR | Zbl
[20] Morgan, F.: Geometric Measure Theory, A beginner’s Guide. fourth ed., Academic Press, 2009. | MR | Zbl
[21] Pan, X.-B.: Landau-de Gennes model of liquid crystals and critical wave number. Comm. Math. Phys. 239 (2003), 343–382. | DOI | MR | Zbl
[22] Pan, X.-B.: Surface superconductivity in $3$-dimensions. Trans. Amer. Math. Soc. 356 (2004), 3899–3937. | DOI | MR | Zbl
[23] Pan, X.-B.: Nodal sets of solutions of equations involving magnetic Schrödinger operator in three dimension. J. Math. Phys. 48 (2007), 053521. | DOI | MR
[24] Pan, X.-B., Kwek, K. H.: On a problem related to vortex nucleation of superconductivity. J. Differential Equations 182 (2002), 141–168. | DOI | MR | Zbl