Keywords: Balakrishnan-Taylor damping; polynomial decay; memory term; viscoelasticity
@article{ARM_2010_46_3_a0,
author = {Zara{\"\i}, Abderrahmane and Tatar, Nasser-eddine},
title = {Global existence and polynomial decay for a problem with {Balakrishnan-Taylor} damping},
journal = {Archivum mathematicum},
pages = {157--176},
year = {2010},
volume = {46},
number = {3},
mrnumber = {2735903},
zbl = {1240.35330},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a0/}
}
TY - JOUR AU - Zaraï, Abderrahmane AU - Tatar, Nasser-eddine TI - Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping JO - Archivum mathematicum PY - 2010 SP - 157 EP - 176 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a0/ LA - en ID - ARM_2010_46_3_a0 ER -
Zaraï, Abderrahmane; Tatar, Nasser-eddine. Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping. Archivum mathematicum, Tome 46 (2010) no. 3, pp. 157-176. http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a0/
[1] Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254 (5) (2008), 1342–1372. | DOI | MR | Zbl
[2] Appleby, J. A. D., Fabrizio, M., Lazzari, B., Reynolds, D. W.: On exponential asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16 (2006), 1677–1694. | DOI | MR | Zbl
[3] Balakrishnan, A. V., Taylor, L. W.: Distributed parameter nonlinear damping models for flight structures. Damping 89', Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.
[4] Ball, J.: Remarks on blow up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford 28 (1977), 473–486. | DOI | MR | Zbl
[5] Bass, R. W., Zes, D.: Spillover, nonlinearity and flexible structures. The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (L.W.Taylor, ed.), 1991, pp. 1–14.
[6] Berrimi, S., Messaoudi, S.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal. 64 (2006), 2314–2331. | MR | Zbl
[7] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.: Existence and uniform decay rates for viscoelastic problems with nonlocal boundary damping. Differential Integral Equations 14 (1) (2001), 85–116. | MR
[8] Cavalcanti, M. M., Oquendo, H. P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. (electronic) 42 (4) (2003), 1310–1324. | DOI | MR | Zbl
[9] Clark, H. R.: Elastic membrane equation in bounded and unbounded domains. Electron. J. Qual. Theory Differ. Equ. 11 (2002), 1–21. | MR | Zbl
[10] Glassey, R. T.: Blow-up theorems for nonlinear wave equations. Math. Z. 132 (1973), 183–203. | DOI | MR | Zbl
[11] Haraux, A., Zuazua, E.: Decay estimates for some semilinear damped hyperbolic problems. Arch. Rational Mech. Anal. 100 (1988), 191–206. | DOI | MR | Zbl
[12] Kalantarov, V. K., Ladyzhenskaya, O. A.: The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J. Soviet Math. 10 (1978), 53–70. | DOI
[13] Kirchhoff, G.: Vorlesungen über Mechanik. Tauber, Leipzig, 1883.
[14] Komornik, V.: Exact controllability and stabilization. The multiplier method. RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. | MR | Zbl
[15] Kopackova, M.: Remarks on bounded solutions of a semilinear dissipative hyperbolic equation. Comment. Math. Univ. Carolin. 30 (1989), 713–719. | MR | Zbl
[16] Li, M. R., Tsai, L. Y.: Existence and nonexistence of global solutions of some systems of semilinear wave equations. Nonlinear Anal. 54 (2003), 1397–1415. | MR
[17] Matsuyama, T., Ikehata, R.: On global solutions and energy decay for the wave equation of Kirchhoff type with nonlinear damping terms. J. Math. Anal. Appl. 204 (3) (1996), 729–753. | DOI | MR
[18] Medjden, M., e. Tatar, N.: On the wave equation with a temporal nonlocal term. Dynam. Systems Appl. 16 (2007), 665–672. | MR
[19] Nakao, M.: Decay of solutions of some nonlinear evolution equation. J. Math. Anal. Appl. 60 (1977), 542–549. | DOI | MR
[20] Nishihara, K., Yamada, Y.: On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms. Funkcial. Ekvac. 33 (1990), 151–159. | MR | Zbl
[21] Ono, K.: Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differential Equations 137 (2) (1997), 273–301. | DOI | MR | Zbl
[22] Ono, K.: On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation. Math. Methods Appl. Sci. 20 (1997), 151–177. | DOI | MR | Zbl
[23] Ono, K.: On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation. J. Math. Anal. Appl. 216 (1997), 321–342. | DOI | MR | Zbl
[24] Pata, V.: Exponential stability in linear viscoelasticity. Quart. Appl. Math. 64 (3) (2006), 499–513. | MR | Zbl
[25] Tatar, N-e. and Zaraï, A., : Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. to appear in Demonstratio Math.
[26] Tatar, N-e. and Zaraï, A., : On a Kirchhoff equation with Balakrishnan-Taylor damping and source term. to apper in DCDIS.
[27] You, Y.: Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping. Abstr. Appl. Anal. 1 (1) (1996), 83–102. | DOI | MR | Zbl