Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping
Archivum mathematicum, Tome 46 (2010) no. 3, pp. 157-176
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].
A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].
Classification : 35A01, 35B40, 35L20, 35L70, 45K05, 74H25, 74K05
Keywords: Balakrishnan-Taylor damping; polynomial decay; memory term; viscoelasticity
@article{ARM_2010_46_3_a0,
     author = {Zara{\"\i}, Abderrahmane and Tatar, Nasser-eddine},
     title = {Global existence and polynomial decay for a problem with {Balakrishnan-Taylor} damping},
     journal = {Archivum mathematicum},
     pages = {157--176},
     year = {2010},
     volume = {46},
     number = {3},
     mrnumber = {2735903},
     zbl = {1240.35330},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a0/}
}
TY  - JOUR
AU  - Zaraï, Abderrahmane
AU  - Tatar, Nasser-eddine
TI  - Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping
JO  - Archivum mathematicum
PY  - 2010
SP  - 157
EP  - 176
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a0/
LA  - en
ID  - ARM_2010_46_3_a0
ER  - 
%0 Journal Article
%A Zaraï, Abderrahmane
%A Tatar, Nasser-eddine
%T Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping
%J Archivum mathematicum
%D 2010
%P 157-176
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a0/
%G en
%F ARM_2010_46_3_a0
Zaraï, Abderrahmane; Tatar, Nasser-eddine. Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping. Archivum mathematicum, Tome 46 (2010) no. 3, pp. 157-176. http://geodesic.mathdoc.fr/item/ARM_2010_46_3_a0/

[1] Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254 (5) (2008), 1342–1372. | DOI | MR | Zbl

[2] Appleby, J. A. D., Fabrizio, M., Lazzari, B., Reynolds, D. W.: On exponential asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16 (2006), 1677–1694. | DOI | MR | Zbl

[3] Balakrishnan, A. V., Taylor, L. W.: Distributed parameter nonlinear damping models for flight structures. Damping 89', Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.

[4] Ball, J.: Remarks on blow up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford 28 (1977), 473–486. | DOI | MR | Zbl

[5] Bass, R. W., Zes, D.: Spillover, nonlinearity and flexible structures. The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (L.W.Taylor, ed.), 1991, pp. 1–14.

[6] Berrimi, S., Messaoudi, S.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal. 64 (2006), 2314–2331. | MR | Zbl

[7] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.: Existence and uniform decay rates for viscoelastic problems with nonlocal boundary damping. Differential Integral Equations 14 (1) (2001), 85–116. | MR

[8] Cavalcanti, M. M., Oquendo, H. P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. (electronic) 42 (4) (2003), 1310–1324. | DOI | MR | Zbl

[9] Clark, H. R.: Elastic membrane equation in bounded and unbounded domains. Electron. J. Qual. Theory Differ. Equ. 11 (2002), 1–21. | MR | Zbl

[10] Glassey, R. T.: Blow-up theorems for nonlinear wave equations. Math. Z. 132 (1973), 183–203. | DOI | MR | Zbl

[11] Haraux, A., Zuazua, E.: Decay estimates for some semilinear damped hyperbolic problems. Arch. Rational Mech. Anal. 100 (1988), 191–206. | DOI | MR | Zbl

[12] Kalantarov, V. K., Ladyzhenskaya, O. A.: The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J. Soviet Math. 10 (1978), 53–70. | DOI

[13] Kirchhoff, G.: Vorlesungen über Mechanik. Tauber, Leipzig, 1883.

[14] Komornik, V.: Exact controllability and stabilization. The multiplier method. RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. | MR | Zbl

[15] Kopackova, M.: Remarks on bounded solutions of a semilinear dissipative hyperbolic equation. Comment. Math. Univ. Carolin. 30 (1989), 713–719. | MR | Zbl

[16] Li, M. R., Tsai, L. Y.: Existence and nonexistence of global solutions of some systems of semilinear wave equations. Nonlinear Anal. 54 (2003), 1397–1415. | MR

[17] Matsuyama, T., Ikehata, R.: On global solutions and energy decay for the wave equation of Kirchhoff type with nonlinear damping terms. J. Math. Anal. Appl. 204 (3) (1996), 729–753. | DOI | MR

[18] Medjden, M., e. Tatar, N.: On the wave equation with a temporal nonlocal term. Dynam. Systems Appl. 16 (2007), 665–672. | MR

[19] Nakao, M.: Decay of solutions of some nonlinear evolution equation. J. Math. Anal. Appl. 60 (1977), 542–549. | DOI | MR

[20] Nishihara, K., Yamada, Y.: On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms. Funkcial. Ekvac. 33 (1990), 151–159. | MR | Zbl

[21] Ono, K.: Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differential Equations 137 (2) (1997), 273–301. | DOI | MR | Zbl

[22] Ono, K.: On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation. Math. Methods Appl. Sci. 20 (1997), 151–177. | DOI | MR | Zbl

[23] Ono, K.: On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation. J. Math. Anal. Appl. 216 (1997), 321–342. | DOI | MR | Zbl

[24] Pata, V.: Exponential stability in linear viscoelasticity. Quart. Appl. Math. 64 (3) (2006), 499–513. | MR | Zbl

[25] Tatar, N-e. and Zaraï, A., : Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. to appear in Demonstratio Math.

[26] Tatar, N-e. and Zaraï, A., : On a Kirchhoff equation with Balakrishnan-Taylor damping and source term. to apper in DCDIS.

[27] You, Y.: Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping. Abstr. Appl. Anal. 1 (1) (1996), 83–102. | DOI | MR | Zbl