Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity
Archivum mathematicum, Tome 46 (2010) no. 2, pp. 119-134
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described.
We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described.
Classification : 53C15, 53C25, 53C35, 53C50
Keywords: conformally flat manifolds; semi-symmetric and pseudo-symmetric spaces; homogeneous and curvature homogeneous spaces
@article{ARM_2010_46_2_a4,
     author = {Calvaruso, Giovanni},
     title = {Conformally flat {Lorentzian} three-spaces with various properties of symmetry and homogeneity},
     journal = {Archivum mathematicum},
     pages = {119--134},
     year = {2010},
     volume = {46},
     number = {2},
     mrnumber = {2684254},
     zbl = {1240.53116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a4/}
}
TY  - JOUR
AU  - Calvaruso, Giovanni
TI  - Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity
JO  - Archivum mathematicum
PY  - 2010
SP  - 119
EP  - 134
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a4/
LA  - en
ID  - ARM_2010_46_2_a4
ER  - 
%0 Journal Article
%A Calvaruso, Giovanni
%T Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity
%J Archivum mathematicum
%D 2010
%P 119-134
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a4/
%G en
%F ARM_2010_46_2_a4
Calvaruso, Giovanni. Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity. Archivum mathematicum, Tome 46 (2010) no. 2, pp. 119-134. http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a4/

[1] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two. World Scientific, 1996. | MR | Zbl

[2] Brozos-Vázquez, M., García-Río, E., Vázquez-Lorenzo, R.: Some remarks on locally conformally flat static space-times. J. Math. Phys. 46 (2005), 11pp., 022501. | DOI | MR | Zbl

[3] Bueken, P.: On curvature homogeneous three-dimensional Lorentzian manifolds. J. Geom. Phys. 22 (1997), 349–362. | DOI | MR | Zbl

[4] Bueken, P., Djorić, M.: Three-dimensional Lorentz metrics and curvature homogeneity of order one. Ann. Glob. Anal. Geom. 18 (2000), 85–103. | DOI | MR

[5] Calvaruso, G.: Einstein-like Lorentz metrics and three-dimensional curvature homogeneity of order one. Canad. Math. Bull., to appear. | MR

[6] Calvaruso, G.: Conformally flat semi-symmetric spaces. Arch. Math. (Brno) 41 (2005), 27–36. | MR | Zbl

[7] Calvaruso, G.: Conformally flat pseudo-symmetric spaces of constant type. Czechoslovak Math. J. 56 (131) (2006), 649–657. | DOI | MR | Zbl

[8] Calvaruso, G.: Einstein-like metrics on three-dimensional homogeneous Lorentzian manifold. Geom. Dedicata 127 (2007), 99–119. | DOI | MR

[9] Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57 (2007), 1279–1291. | DOI | MR | Zbl

[10] Calvaruso, G., De Leo, B., : Pseudo-symmetric Lorentzian three-manifolds. Int. J. Geom. Methods Mod. Phys. 6 (7) (2009), 1–16. | DOI | MR | Zbl

[11] Calvaruso, G., Van der Veken, J., : Lorentzian symmetric three-spaces and their parallel surfaces. Internat. J. Math. 20 (10) (2009), 1185–1205. | DOI | MR

[12] Calvaruso, G., Vanhecke, L.: Semi-symmetric ball-homogeneous spaces and a volume conjecture. Bull. Austral. Math. Soc. 57 (1998), 109–115. | DOI | MR | Zbl

[13] Chaichi, M., García-Río, E., Vázquez-Abal, M. E.: Three-dimensional Lorentz manifolds admitting a parallel null vector field. J. Phys. A: Math. Gen. 38 (2005), 841–850. | DOI | MR

[14] Deprez, J., Desczcz, R., Verstraelen, L.: Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math. 17 (1989), 51–65. | MR

[15] García-Río, E., Haji-Badali, A., Vázquez-Abal, M. E., Vázquez-Lorenz, R.: Lorentzian $3$-manifolds with commuting curvature operators. Int. J. Geom. Methods Mod. Phys. 5 (4) (2008), 557–572. | DOI | MR

[16] Hashimoto, N., Sekizawa, M.: Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286. | MR | Zbl

[17] Honda, K.: Conformally flat semi-Riemannian manifolds with commuting curvature and Ricci operators. Tokyo J. Math. 26 (1) (2003), 241–260. | DOI | MR | Zbl

[18] Honda, K., Tsukada, K.: Three-dimensional conformally flat homogeneous Lorentzian manifolds. J. Phys. A: Math. Theor. 40 (2007), 831–851. | DOI | MR | Zbl

[19] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York, 1983. | MR

[20] Ryan, P.: A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., 1971 (2), Dalhousie Univ. Halifax, 1972, pp. 115–124. | MR | Zbl

[21] Sekigawa, K., Takagi, H.: On conformally flat spaces satisfyig a certain condition on the Ricci tensor. Tôhoku Math. J. 23 (1971), 1–11. | DOI | MR

[22] Singer, I. M.: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685–697. | DOI | MR | Zbl

[23] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, The local version. J. Differential Geom. 17 (1982), 531–582. | MR

[24] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, II, Global versions. Geom. Dedicata 19 (1985), 65–108. | DOI | MR

[25] Takagi, H.: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$. Tôhoku Math. J. 24 (1972), 105–108. | DOI | MR

[26] Takagi, H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tohôku Math. J. 27 (1975), 103–110. | DOI | MR | Zbl