A note on linear perturbations of oscillatory second order differential equations
Archivum mathematicum, Tome 46 (2010) no. 2, pp. 105-118 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$.
Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$.
Classification : 34C11, 34D10
Keywords: second order ODE; boundedness of solutions; linear perturbations
@article{ARM_2010_46_2_a3,
     author = {Manfrin, Renato},
     title = {A note on linear perturbations of oscillatory second order differential equations},
     journal = {Archivum mathematicum},
     pages = {105--118},
     year = {2010},
     volume = {46},
     number = {2},
     mrnumber = {2684253},
     zbl = {1240.34186},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a3/}
}
TY  - JOUR
AU  - Manfrin, Renato
TI  - A note on linear perturbations of oscillatory second order differential equations
JO  - Archivum mathematicum
PY  - 2010
SP  - 105
EP  - 118
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a3/
LA  - en
ID  - ARM_2010_46_2_a3
ER  - 
%0 Journal Article
%A Manfrin, Renato
%T A note on linear perturbations of oscillatory second order differential equations
%J Archivum mathematicum
%D 2010
%P 105-118
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a3/
%G en
%F ARM_2010_46_2_a3
Manfrin, Renato. A note on linear perturbations of oscillatory second order differential equations. Archivum mathematicum, Tome 46 (2010) no. 2, pp. 105-118. http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a3/

[1] Bellman, R.: A stability property of solutions of linear differential equations. Duke Math. J. 11 (1944), 513–516. | DOI | MR | Zbl

[2] Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill Book Company, New York, 1953. | MR | Zbl

[3] Cesari, L.: Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. 2nd ed., Springer-Verlag, Berlin, 1963. | Zbl

[4] Galbraith, A., McShane, E. J., Parrish, G.: On the solutions of the linear second-order differential equations. Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 247–249. | DOI | MR

[5] Knowles, I.: On stability conditions for second order linear differential equations. J. Differential Equations 34 (1979), 179–203. | DOI | MR | Zbl

[6] Manfrin, R.: Quadratic forms for the Liouville equation $\,w_{tt}+ \lambda ^2a(t) w=0$ with applications to Kirchhoff equation. Portugal. Math. 65 (2008), 447–484. | DOI | MR | Zbl

[7] Manfrin, R.: $ L^p$ solutions of second order differential equations. Funkcial. Ekvac. 52 (2009), 255–279. | DOI | MR | Zbl

[8] Manfrin, R.: On the boundedness of solutions of the equation $\, u^{\prime \prime }+ (1+f(t)) u=0$. Discrete Contin. Dynam. Systems 23 (2009), 991–1008. | MR | Zbl

[9] Opial, Z.: Nouvelles remarques sur l’équation différentielle $u^{\prime \prime }+ a(t) u=0$. Ann. Polon. Math. 6 (1959), 75–81. | MR | Zbl

[10] Trench, W. F.: On the asymptotic behavior of solutions of second order linear differential equations. Proc. Amer. Math. Soc. 14 (1963), 12–14. | DOI | MR