A note on linear perturbations of oscillatory second order differential equations
Archivum mathematicum, Tome 46 (2010) no. 2, pp. 105-118
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$.
Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$.
Classification :
34C11, 34D10
Keywords: second order ODE; boundedness of solutions; linear perturbations
Keywords: second order ODE; boundedness of solutions; linear perturbations
@article{ARM_2010_46_2_a3,
author = {Manfrin, Renato},
title = {A note on linear perturbations of oscillatory second order differential equations},
journal = {Archivum mathematicum},
pages = {105--118},
year = {2010},
volume = {46},
number = {2},
mrnumber = {2684253},
zbl = {1240.34186},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a3/}
}
Manfrin, Renato. A note on linear perturbations of oscillatory second order differential equations. Archivum mathematicum, Tome 46 (2010) no. 2, pp. 105-118. http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a3/