Keywords: space-like hypersurface; Lorentzian space form; $k$-mean curvature; principal curvature
@article{ARM_2010_46_2_a1,
author = {Shu, Shichang},
title = {Hypersurfaces with constant $k$-th mean curvature in a {Lorentzian} space form},
journal = {Archivum mathematicum},
pages = {87--97},
year = {2010},
volume = {46},
number = {2},
mrnumber = {2684251},
zbl = {1240.53101},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a1/}
}
Shu, Shichang. Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form. Archivum mathematicum, Tome 46 (2010) no. 2, pp. 87-97. http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a1/
[1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form. Yokohama Math. J. 35 (2) (1987), 123–136. | MR | Zbl
[2] Akutagawa, K.: On spacelike hypersurfaces with constant mean curvature in a de Sitter space. Math. Z. 196 (1987), 13–19. | DOI | MR
[3] Brasil, A., Jr., , Colares, A. G., Palmas, O.: Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem. Illinois J. Math. 47 (2003), 847–866. | MR | Zbl
[4] Calabi, E.: Examples of Bernstein problems for some nonlinear equations. Proc. Sympos. Pure Math. 15 (1970), 223–230. | MR | Zbl
[5] Cheng, S. Y., Yau, S. T.: Maximal space-like hypersurfaces in the Lorentz- Minkowski spaces. Ann. of Math. (2) 104 (3) (1976), 407–419. | DOI | MR | Zbl
[6] Chouque-Bruhat, Y., Fisher, A. E., Marsden, J. E.: Maximal hypersurfaces and positivity mass. Proc. of the E. Fermi Summer School of the Italian Physical Society (Ehlers, J., ed.), North-Holland, 1979.
[7] Goddard, A. J.: Some remarks on the existence of spacelike hypersurfaces of constant mean curvature. Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. | DOI | MR | Zbl
[8] Hu, Z., Scherfner, M., Zhai, S.: On spacelike hypersurfaces with constant salar curvature in the de Sitter space. Differential Geom. Appl. 25 (2007), 594–611. | DOI | MR
[9] Ishihara, T.: Maximal space-like submanifolds of a pseudo-Riemannian space form of constant curvature. Michigan Math. J. 35 (1988), 345–352. | DOI | MR
[10] Ki, U.-H., Kim, H.-J., Nakagawa, H.: On space-like hypersurfaces with constant mean curvature of a Lorentz space form. Tokyo J. Math. 14 (1) (1991), 205–215. | DOI | MR | Zbl
[11] Li, H., Chen, W.: Integral formulas for compact spacelike hypersurfaces in de Sitter space and their applications to Goddard’s conjecture. Acta Math. Sinica (N.S.) 14 (2) (1998), 285–288. | DOI | MR | Zbl
[12] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer. J. Math. 92 (1970), 145–173. | DOI | MR | Zbl
[13] Ramanathan, J.: Complete spacelike hypersurfaces of constant mean curvature in the de Sitter space. Indiana Univ. Math. J. 36 (1987), 349–359. | DOI | MR
[14] Shu, S.: Complete space-like hypersurfaces in a de Sitter space. Bull. Austral. Math. Soc. 73 (2006), 9–16. | DOI | MR
[15] Wei, G.: Complete hypersurfaces with constant mean curvature in a unit sphere. Monatsh. Math. 149 (2006), 251–258. | DOI | MR | Zbl
[16] Zheng, Y.: Space-like hypersurfaces with constant salar curvature in the de Sitter space. Differential Geom. Appl. 6 (1996), 51–54. | DOI | MR