Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form
Archivum mathematicum, Tome 46 (2010) no. 2, pp. 87-97 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we study $n(n\ge 3)$-dimensional complete connected and oriented space-like hypersurfaces $M^n$ in an (n+1)-dimensional Lorentzian space form $M^{n+1}_1(c)$ with non-zero constant $k$-th $(k0$, non-positive when $c\le 0$, where $M^{n-m}(c_2)$ denotes $R^{n-m}$, $S^{n-m}(c_2)$ or $H^{n-m}(c_2)$, according to $c=0$, $c>0$ or $c0$, where $s$ is the arc length of the integral curve of the principal vector field corresponding to the principal curvature $\mu $.
In this paper, we study $n(n\ge 3)$-dimensional complete connected and oriented space-like hypersurfaces $M^n$ in an (n+1)-dimensional Lorentzian space form $M^{n+1}_1(c)$ with non-zero constant $k$-th $(k$ mean curvature and two distinct principal curvatures $\lambda $ and $\mu $. We give some characterizations of Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ and show that the Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ is the only complete connected and oriented space-like hypersurface in $M^{n+1}_1(c)$ with constant $k$-th mean curvature and two distinct principal curvatures, if the multiplicities of both principal curvatures are greater than 1, or if the multiplicity of $\lambda $ is $n-1$, $\lim \limits _{s\rightarrow \pm \infty }\lambda ^k\ne H_k$ and the sectional curvature of $M^n$ is non-negative (or non-positive) when $c>0$, non-positive when $c\le 0$, where $M^{n-m}(c_2)$ denotes $R^{n-m}$, $S^{n-m}(c_2)$ or $H^{n-m}(c_2)$, according to $c=0$, $c>0$ or $c0$, where $s$ is the arc length of the integral curve of the principal vector field corresponding to the principal curvature $\mu $.
Classification : 53A10, 53C42
Keywords: space-like hypersurface; Lorentzian space form; $k$-mean curvature; principal curvature
@article{ARM_2010_46_2_a1,
     author = {Shu, Shichang},
     title = {Hypersurfaces with constant $k$-th mean curvature in a {Lorentzian} space form},
     journal = {Archivum mathematicum},
     pages = {87--97},
     year = {2010},
     volume = {46},
     number = {2},
     mrnumber = {2684251},
     zbl = {1240.53101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a1/}
}
TY  - JOUR
AU  - Shu, Shichang
TI  - Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form
JO  - Archivum mathematicum
PY  - 2010
SP  - 87
EP  - 97
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a1/
LA  - en
ID  - ARM_2010_46_2_a1
ER  - 
%0 Journal Article
%A Shu, Shichang
%T Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form
%J Archivum mathematicum
%D 2010
%P 87-97
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a1/
%G en
%F ARM_2010_46_2_a1
Shu, Shichang. Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form. Archivum mathematicum, Tome 46 (2010) no. 2, pp. 87-97. http://geodesic.mathdoc.fr/item/ARM_2010_46_2_a1/

[1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form. Yokohama Math. J. 35 (2) (1987), 123–136. | MR | Zbl

[2] Akutagawa, K.: On spacelike hypersurfaces with constant mean curvature in a de Sitter space. Math. Z. 196 (1987), 13–19. | DOI | MR

[3] Brasil, A., Jr., , Colares, A. G., Palmas, O.: Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem. Illinois J. Math. 47 (2003), 847–866. | MR | Zbl

[4] Calabi, E.: Examples of Bernstein problems for some nonlinear equations. Proc. Sympos. Pure Math. 15 (1970), 223–230. | MR | Zbl

[5] Cheng, S. Y., Yau, S. T.: Maximal space-like hypersurfaces in the Lorentz- Minkowski spaces. Ann. of Math. (2) 104 (3) (1976), 407–419. | DOI | MR | Zbl

[6] Chouque-Bruhat, Y., Fisher, A. E., Marsden, J. E.: Maximal hypersurfaces and positivity mass. Proc. of the E. Fermi Summer School of the Italian Physical Society (Ehlers, J., ed.), North-Holland, 1979.

[7] Goddard, A. J.: Some remarks on the existence of spacelike hypersurfaces of constant mean curvature. Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. | DOI | MR | Zbl

[8] Hu, Z., Scherfner, M., Zhai, S.: On spacelike hypersurfaces with constant salar curvature in the de Sitter space. Differential Geom. Appl. 25 (2007), 594–611. | DOI | MR

[9] Ishihara, T.: Maximal space-like submanifolds of a pseudo-Riemannian space form of constant curvature. Michigan Math. J. 35 (1988), 345–352. | DOI | MR

[10] Ki, U.-H., Kim, H.-J., Nakagawa, H.: On space-like hypersurfaces with constant mean curvature of a Lorentz space form. Tokyo J. Math. 14 (1) (1991), 205–215. | DOI | MR | Zbl

[11] Li, H., Chen, W.: Integral formulas for compact spacelike hypersurfaces in de Sitter space and their applications to Goddard’s conjecture. Acta Math. Sinica (N.S.) 14 (2) (1998), 285–288. | DOI | MR | Zbl

[12] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer. J. Math. 92 (1970), 145–173. | DOI | MR | Zbl

[13] Ramanathan, J.: Complete spacelike hypersurfaces of constant mean curvature in the de Sitter space. Indiana Univ. Math. J. 36 (1987), 349–359. | DOI | MR

[14] Shu, S.: Complete space-like hypersurfaces in a de Sitter space. Bull. Austral. Math. Soc. 73 (2006), 9–16. | DOI | MR

[15] Wei, G.: Complete hypersurfaces with constant mean curvature in a unit sphere. Monatsh. Math. 149 (2006), 251–258. | DOI | MR | Zbl

[16] Zheng, Y.: Space-like hypersurfaces with constant salar curvature in the de Sitter space. Differential Geom. Appl. 6 (1996), 51–54. | DOI | MR