Yang-Mills bar connections over compact Kähler manifolds
Archivum mathematicum, Tome 46 (2010) no. 1, pp. 47-69 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we introduce a Yang-Mills bar equation on complex vector bundles $E$ provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on $E$ can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections among a class of Yang-Mills bar connections over compact Käahler manifolds of positive Ricci curvature.
In this note we introduce a Yang-Mills bar equation on complex vector bundles $E$ provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on $E$ can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections among a class of Yang-Mills bar connections over compact Käahler manifolds of positive Ricci curvature.
Classification : 53C44, 53C55, 58E99
Keywords: Kähler manifold; complex vector bundle; holomorphic connection; Yang-Mills bar gradient flow
@article{ARM_2010_46_1_a4,
     author = {V\^an L\^e, H\^ong},
     title = {Yang-Mills bar connections over compact {K\"ahler} manifolds},
     journal = {Archivum mathematicum},
     pages = {47--69},
     year = {2010},
     volume = {46},
     number = {1},
     mrnumber = {2644454},
     zbl = {1240.53118},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a4/}
}
TY  - JOUR
AU  - Vân Lê, Hông
TI  - Yang-Mills bar connections over compact Kähler manifolds
JO  - Archivum mathematicum
PY  - 2010
SP  - 47
EP  - 69
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a4/
LA  - en
ID  - ARM_2010_46_1_a4
ER  - 
%0 Journal Article
%A Vân Lê, Hông
%T Yang-Mills bar connections over compact Kähler manifolds
%J Archivum mathematicum
%D 2010
%P 47-69
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a4/
%G en
%F ARM_2010_46_1_a4
Vân Lê, Hông. Yang-Mills bar connections over compact Kähler manifolds. Archivum mathematicum, Tome 46 (2010) no. 1, pp. 47-69. http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a4/

[1] Bourguignon, J. P., Lawson, H. B.: Stability phenomena for Yang-Mills fields. Commun. Math. Phys. 79 (1981), 189–230. | DOI | MR

[2] Donaldson, S. K., Kronheimer, P. B.: The geometry of 4-manifolds. Clarendon Press, Oxford, 1990. | MR

[3] Griffiths, P., Harris, J.: Principles of algebraic geometry. 2nd ed., Wiley Classics Library, New York, 1994. | MR | Zbl

[4] Hamilton, R.: Three manifold with positive Ricci curvature. J. Differential Geom. 17 (2) (1982), 255–306. | MR

[5] Kobayashi, S.: Differential geometry of complex vector bundles. Iwanami Shoten Publishers and Princeton University Press, 1987. | MR | Zbl

[6] Koszul, J. L., Malgrange, B.: Sur certaines structures fibres complexes. Arch. Math. (Basel) 9 (1958), 102–109. | DOI | MR