Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$
Archivum mathematicum, Tome 46 (2010) no. 1, pp. 39-46 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a unit speed timelike curve $\alpha $ in Minkowski 4-space ${\mathbf{E}}_1^4$ and denote the Frenet frame of $\alpha $ by $\lbrace {\mathbf{T}}, {\mathbf{N}}, {\mathbf{B}}_1, {\mathbf{B}}_2\rbrace $. We say that $\alpha $ is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction $U$ of ${\mathbf{E}}_1^4$. In this work we study those helices where the function $\langle {\mathbf{B}}_2,U\rangle $ is constant and we give different characterizations of such curves.
We consider a unit speed timelike curve $\alpha $ in Minkowski 4-space ${\mathbf{E}}_1^4$ and denote the Frenet frame of $\alpha $ by $\lbrace {\mathbf{T}}, {\mathbf{N}}, {\mathbf{B}}_1, {\mathbf{B}}_2\rbrace $. We say that $\alpha $ is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction $U$ of ${\mathbf{E}}_1^4$. In this work we study those helices where the function $\langle {\mathbf{B}}_2,U\rangle $ is constant and we give different characterizations of such curves.
Classification : 53B30, 53C50
Keywords: Minkowski space; timelike curve; Frenet equations; slant helix
@article{ARM_2010_46_1_a3,
     author = {Ali, Ahmad T. and L\'opez, Rafael},
     title = {Timelike $B_2$-slant helices in {Minkowski} space $\operatorname{E}_1^4$},
     journal = {Archivum mathematicum},
     pages = {39--46},
     year = {2010},
     volume = {46},
     number = {1},
     mrnumber = {2644453},
     zbl = {1240.53115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a3/}
}
TY  - JOUR
AU  - Ali, Ahmad T.
AU  - López, Rafael
TI  - Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$
JO  - Archivum mathematicum
PY  - 2010
SP  - 39
EP  - 46
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a3/
LA  - en
ID  - ARM_2010_46_1_a3
ER  - 
%0 Journal Article
%A Ali, Ahmad T.
%A López, Rafael
%T Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$
%J Archivum mathematicum
%D 2010
%P 39-46
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a3/
%G en
%F ARM_2010_46_1_a3
Ali, Ahmad T.; López, Rafael. Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$. Archivum mathematicum, Tome 46 (2010) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a3/

[1] Barros, M.: General helices and a theorem of Lancret. Proc. Amer. Math. Soc. 125 (1997), 1503–1509. | DOI | MR | Zbl

[2] Erdoǧan, M., Yilmaz, G.: Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space. Int. J. Contemp. Math. Sci. 3 (2008), 1113–1120. | MR | Zbl

[3] Ferrandez, A., Gimenez, A., Luca, P.: Null helices in Lorentzian space forms. Int. J. Mod. Phys. A 16 (2001), 4845–4863. | DOI | MR

[4] Gluck, H.: Higher curvatures of curves in Eulidean space. Amer. Math. Monthly 73 (1996), 699–704. | DOI | MR

[5] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turkish J. Math. 28 (2004), 531–537. | MR | Zbl

[6] Kocayiǧit, H., Önder, M.: Timelike curves of constant slope in Minkowski space ${\mathbf{E}}_1^4$. J. Science Techn. Beykent Univ. 1 (2007), 311–318.

[7] Kula, L., Yayli, Y.: On slant helix and its spherical indicatrix. Appl. Math. Comput. 169 (2005), 600–607. | DOI | MR | Zbl

[8] Millman, R. S., Parker, G. D.: Elements of differential geometry. Prentice-Hall Inc., Englewood Cliffs, N. J., 1977. | MR | Zbl

[9] Önder, M., Kazaz, M., Kocayiǧit, H., Kilic, O.: $B_2$-slant helix in Euclidean 4-space $E^4$. Int. J. Contemp. Math. Sci. 3 (29) (2008), 1433–1440. | MR | Zbl

[10] O’Neill, B.: Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics. vol. 103, Academic Press, Inc., New York, 1983. | MR

[11] Petrovic-Torgasev, M., Sucurovic, E.: W-curves in Minkowski spacetime. Novi Sad J. Math. 32 (2002), 55–65. | MR

[12] Scofield, P. D.: Curves of constant precession. Amer. Math. Monthly 102 (1995), 531–537. | DOI | MR | Zbl

[13] Synge, J. L.: Timelike helices in flat space-time. Proc. Roy. Irish Acad. Sect. A 65 (1967), 27–42. | MR | Zbl