Keywords: cocomplete category; free algebra; variety; natural transformation
@article{ARM_2010_46_1_a2,
author = {Pavl{\'\i}k, Jan},
title = {Free algebras in varieties},
journal = {Archivum mathematicum},
pages = {25--38},
year = {2010},
volume = {46},
number = {1},
mrnumber = {2644452},
zbl = {1240.08005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a2/}
}
Pavlík, Jan. Free algebras in varieties. Archivum mathematicum, Tome 46 (2010) no. 1, pp. 25-38. http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a2/
[1] Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carolin. 015 (4) (1974), 589–602. | MR
[2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and concrete categories. Free Software Foundation, 1990/2006. | MR
[3] Adámek, J., Porst, H.: From varieties of algebras to covarieties of coalgebras. Math. Structures Comput. Sci. (2001). | Zbl
[4] Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge University Press, 1994. | MR
[5] Adámek, J., Trnková, V.: Birkhoff’s variety theorem with and without free algebras. Theory Appl. Categ. 14 (18) (2005), 424–450. | MR | Zbl
[6] Barr, M.: Coequalizers and free triples. Math. Z. 116 (1970), 307–322. | DOI | MR | Zbl
[7] Kelly, G. M.: A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc. 22 (1) (1980), 1–83. | DOI | MR | Zbl
[8] MacLane, S.: Categories for the working mathematician. Springer-Verlag, 1971. | MR
[9] Reiterman, J.: One more categorical model of universal algebra. Math. Z. 161 (2) (1978), 137–146. | DOI | MR | Zbl
[10] Reiterman, J.: On locally small based algebraic theories. Comment. Math. Univ. Carolin. 27 (2) (1986), 325–340. | MR | Zbl