Free algebras in varieties
Archivum mathematicum, Tome 46 (2010) no. 1, pp. 25-38 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define varieties of algebras for an arbitrary endofunctor on a cocomplete category using pairs of natural transformations. This approach is proved to be equivalent to one of equational classes defined by equation arrows. Free algebras in the varieties are investigated and their existence is proved under the assumptions of accessibility.
We define varieties of algebras for an arbitrary endofunctor on a cocomplete category using pairs of natural transformations. This approach is proved to be equivalent to one of equational classes defined by equation arrows. Free algebras in the varieties are investigated and their existence is proved under the assumptions of accessibility.
Classification : 08C05, 18C05, 18C20
Keywords: cocomplete category; free algebra; variety; natural transformation
@article{ARM_2010_46_1_a2,
     author = {Pavl{\'\i}k, Jan},
     title = {Free algebras in varieties},
     journal = {Archivum mathematicum},
     pages = {25--38},
     year = {2010},
     volume = {46},
     number = {1},
     mrnumber = {2644452},
     zbl = {1240.08005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a2/}
}
TY  - JOUR
AU  - Pavlík, Jan
TI  - Free algebras in varieties
JO  - Archivum mathematicum
PY  - 2010
SP  - 25
EP  - 38
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a2/
LA  - en
ID  - ARM_2010_46_1_a2
ER  - 
%0 Journal Article
%A Pavlík, Jan
%T Free algebras in varieties
%J Archivum mathematicum
%D 2010
%P 25-38
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a2/
%G en
%F ARM_2010_46_1_a2
Pavlík, Jan. Free algebras in varieties. Archivum mathematicum, Tome 46 (2010) no. 1, pp. 25-38. http://geodesic.mathdoc.fr/item/ARM_2010_46_1_a2/

[1] Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carolin. 015 (4) (1974), 589–602. | MR

[2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and concrete categories. Free Software Foundation, 1990/2006. | MR

[3] Adámek, J., Porst, H.: From varieties of algebras to covarieties of coalgebras. Math. Structures Comput. Sci. (2001). | Zbl

[4] Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge University Press, 1994. | MR

[5] Adámek, J., Trnková, V.: Birkhoff’s variety theorem with and without free algebras. Theory Appl. Categ. 14 (18) (2005), 424–450. | MR | Zbl

[6] Barr, M.: Coequalizers and free triples. Math. Z. 116 (1970), 307–322. | DOI | MR | Zbl

[7] Kelly, G. M.: A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc. 22 (1) (1980), 1–83. | DOI | MR | Zbl

[8] MacLane, S.: Categories for the working mathematician. Springer-Verlag, 1971. | MR

[9] Reiterman, J.: One more categorical model of universal algebra. Math. Z. 161 (2) (1978), 137–146. | DOI | MR | Zbl

[10] Reiterman, J.: On locally small based algebraic theories. Comment. Math. Univ. Carolin. 27 (2) (1986), 325–340. | MR | Zbl