Keywords: manifold; linear connection; metric; pseudo-Riemannian geometry
@article{ARM_2009_45_4_a7,
author = {Van\v{z}urov\'a, Alena},
title = {Metrization of connections with regular curvature},
journal = {Archivum mathematicum},
pages = {325--333},
year = {2009},
volume = {45},
number = {4},
mrnumber = {2591685},
zbl = {1212.53020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a7/}
}
Vanžurová, Alena. Metrization of connections with regular curvature. Archivum mathematicum, Tome 45 (2009) no. 4, pp. 325-333. http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a7/
[1] Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin, Heidelberg, New York, 2003. | MR | Zbl
[2] Borel, A., Lichnerowicz, A.: Groupes d’holonomie des variétés riemanniennes. C. R. Acad. Sci. Paris 234 (1952), 1835–1837. | MR | Zbl
[3] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
[4] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. | DOI | MR | Zbl
[5] Kowalski, O.: Metrizability of affine connections on analytic manifolds. Note di Matematica 8 (1) (1988), 1–11. | MR | Zbl
[6] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78 (1996), 311–333. | DOI | MR
[7] Mikeš, J., Kiosak, V., Vanžurová, A.: Geodesic mappings of manifolds with affine connection. Palacký University, Olomouc (2008). | MR | Zbl
[8] Schmidt, B. G.: Conditions on a connection to be a metric connection. Commun. Math. Phys. 29 (1973), 55–59. | DOI | MR
[9] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras. Arch. Math. (Brno) 44 (2008), 339–349. | MR | Zbl
[10] Vilimová, Z.: The problem of metrizability of linear connections. Master's thesis, 2004, (supervisor: O. Krupková).