Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects
Archivum mathematicum, Tome 45 (2009) no. 4, pp. 301-324
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.
We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.
Classification : 16-02, 16E40, 16E45, 17B56, 17B70, 53D17, 53D55, 58A50, 58D29, 81T70
Keywords: supergeometry; odd symplectic manifolds; functional integral quantization; Graded Lie Algebras; Hochschild cohomology
@article{ARM_2009_45_4_a6,
     author = {Roger, Claude},
     title = {Gerstenhaber and {Batalin-Vilkovisky} algebras; algebraic, geometric, and physical aspects},
     journal = {Archivum mathematicum},
     pages = {301--324},
     year = {2009},
     volume = {45},
     number = {4},
     mrnumber = {2591684},
     zbl = {1212.58004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a6/}
}
TY  - JOUR
AU  - Roger, Claude
TI  - Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects
JO  - Archivum mathematicum
PY  - 2009
SP  - 301
EP  - 324
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a6/
LA  - en
ID  - ARM_2009_45_4_a6
ER  - 
%0 Journal Article
%A Roger, Claude
%T Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects
%J Archivum mathematicum
%D 2009
%P 301-324
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a6/
%G en
%F ARM_2009_45_4_a6
Roger, Claude. Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects. Archivum mathematicum, Tome 45 (2009) no. 4, pp. 301-324. http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a6/

[1] Akman, F.: Multibraces on the Hochschild space. J. Pure Appl. Algebra 167 (2002), no. 2-3, 129–163. MR MR1874538 (2002k:17001) | DOI | MR | Zbl

[2] Batalin, I. A., Vilkovisky, G. A.: Gauge algebra and quantization. Phys. Lett. B 102 (1981), no. 1, 27–31. MR MR616572 (82j:81047) | DOI | MR

[3] Batalin, I. A., Vilkovisky, G. A.: Quantization of gauge theories with linearly dependent generators. Phys. Rev. D (3) 28 (1983), no. 10, 2567–2582. MR MR726170 (85i:81068a) | DOI | MR

[4] Bonechi, F., Zabzine, M.: Poisson Sigma model on the sphere. Comm. Math. Phys. 285 (2009), no. 3, 1033–1063. | DOI | MR | Zbl

[5] Bouwknegt, P., McCarthy, J., Pilch, K.: The ${\mathcal{W}}_3$ algebra. Lecture Notes in Physics. New Series m: Monographs, vol. 42, Springer-Verlag, Berlin, 1996. MR MR1423803 (97m:17029) | MR

[6] Brylinski, J.-L., : A differential complex for Poisson manifolds. J. Differential Geom. 28 (1988), no. 1, 93–114. MR MR950556 (89m:58006) | MR | Zbl

[7] Cahen, M., Gutt, S., De Wilde, M.: Local cohomology of the algebra of $C^{\infty }$ functions on a connected manifold. Lett. Math. Phys. 4 (1980), no. 3, 157–167. MR MR583079 (81j:58046) | DOI | MR

[8] Calvez-Carillo, I., Tonks, A., Vallette, B.: Homotopy Batalin-Vilkovisky algebras. Preprint, 2008. MR MR2062626 (2005i:53122)

[9] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton, NJ, 1956. | MR | Zbl

[10] Cattaneo, A.: On the BV-formalism. Preprint, Zürich Universität, 2005. MR MR2062626 (2005i:53122)

[11] Connes, A.: Noncommutative geometry. Academic Press Inc., San Diego, CA, 1994. MR MR1303779 (95j:46063) | MR | Zbl

[12] De Wilde, M. and Lecomte, P., : An homotopy formula for the Hochschild cohomology. Compositio Math. 96 (1995), no. 1, 99–109. MR MR1323727 (96f:16012) | MR

[13] Quantum fields and strings: a course for mathematicians. Vol. 1, 2. American Mathematical Society, Providence, RI, 1999, Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. MR MR1701618 (2000e:81010) | MR | Zbl

[14] Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. of Math. (2) 78 (1963), 267–288. MR MR0161898 (28 #5102) | MR | Zbl

[15] Gerstenhaber, M., Schack, S. D.: Algebraic cohomology and deformation theory. Deformation theory of algebras and structures and applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 247, Kluwer Acad. Publ., Dordrecht, 1988, pp. 11–264. MR MR981619 (90c:16016) | MR | Zbl

[16] Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. (1960), no. 4, 228. MR MR0217083 (36 #177a) | MR | Zbl

[17] Hochschild, G., Kostant, B., Rosenberg, A.: Differential forms on regular affine algebras. Trans. Amer. Math. Soc. 102 (1962), 383–408. MR MR0142598 (26 #167) | DOI | MR | Zbl

[18] Huebschmann, J.: Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras. Ann. Inst. Fourier (Grenoble) 48 (1998), no. 2, 425–440. MR MR1625610 (99b:17021) | DOI | MR | Zbl

[19] Khudaverdian, H. M.: Semidensities on odd symplectic supermanifolds. Comm. Math. Phys. 247 (2004), no. 2, 353–390. MR MR2063265 (2005e:58004) | DOI | MR | Zbl

[20] Khudaverdian, H. M., Voronov, Th. Th.: Differential forms and odd symplectic geometry. 2006, http://www.citebase.org/abstract?id=oai:arXiv.org:math/0606560 | MR

[21] Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR MR2062626 (2005i:53122) | DOI | MR | Zbl

[22] Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41 (1995), no. 1-3, 153–165, Geometric and algebraic structures in differential equations. MR MR1362125 (97i:17021) | DOI | MR | Zbl

[23] Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geom. 12 (1977), no. 2, 253–300. MR MR0501133 (58 #18565) | MR | Zbl

[24] Mac Lane, S., : Homology. Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition. MR MR1344215 (96d:18001) | MR | Zbl

[25] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., Providence, RI, 2002. MR MR1898414 (2003f:18011) | MR | Zbl

[26] Nijenhuis, A.: Geometric aspects of formal differential operations on tensors fields. Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 463–469. MR MR0170293 (30 #531) | MR

[27] Peetre, J.: Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7 (1959), 211–218. | MR | Zbl

[28] Penkava, M., Schwarz, A.: On some algebraic structures arising in string theory. Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, pp. 219–227. MR MR1314668 (96b:81121) | MR | Zbl

[29] Poletaeva, E.: Analogues of Riemann tensors for the odd metric on supermanifolds. Acta Appl. Math. 31 (1993), no. 2, 137–169. MR MR1223168 (94d:58166) | DOI | MR | Zbl

[30] Schreiber, U.: On the BV-formalism. Preprint, The n-category café, Department of Physics University of Texas at Austin (2006). MR MR2062626 (2005i:53122)

[31] Schwarz, A.: Geometry of Batalin-Vilkovisky quantization. Comm. Math. Phys. 155 (1993), no. 2, 249–260. MR MR1230027 (95f:81095) | DOI | MR | Zbl

[32] Felix Berezin: the life and death of the mastermind of supermathematics. World Scientific, 2007, Singapore, 2007, Andrei Losev: from Berezin integral to Batalin-Vilkovisky formalism: a mathematical physicist's point of view. | MR

[33] Stasheff, J.: The (secret?) homological algebra of the Batalin-Vilkovisky approach. Secondary calculus and cohomological physics (Moscow, 1997), Contemp. Math., vol. 219, Amer. Math. Soc., Providence, RI, 1998, pp. 195–210. MR MR1640453 (2000f:18011) | MR | Zbl

[34] Tougeron, J.-C., : Idéaux de fonctions différentiables. Springer Verlag, Berlin, Heidelberg, New York, 1972. | MR | Zbl

[35] Voronov, A. A., Gerstenhaber, M.: Higher-order operations on the Hochschild complex. Funktsional. Anal. i Prilozhen. 29 (1995), no. 1, 1–6, 96. MR MR1328534 (96g:18006) | DOI | MR

[36] Waldmann, S.: Poisson-Geometrie und Deformationsquantisierung. Eine Einführung. Springer-Verlag, Berlin-Heidelberg, 2007. | Zbl

[37] Xu, Ping, : Gerstenhaber algebras and BV-algebras in Poisson geometry. Comm. Math. Phys. 200 (1999), no. 3, 545–560. MR MR1675117 (2000b:17025) | MR