Examples of homotopy Lie algebras
Archivum mathematicum, Tome 45 (2009) no. 4, pp. 265-277 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We look at two examples of homotopy Lie algebras (also known as $L_{\infty }$ algebras) in detail from two points of view. We will exhibit the algebraic point of view in which the generalized Jacobi expressions are verified by using degree arguments and combinatorics. A second approach using the nilpotency of Grassmann-odd differential operators $\Delta $ to verify the homotopy Lie data is shown to produce the same results.
We look at two examples of homotopy Lie algebras (also known as $L_{\infty }$ algebras) in detail from two points of view. We will exhibit the algebraic point of view in which the generalized Jacobi expressions are verified by using degree arguments and combinatorics. A second approach using the nilpotency of Grassmann-odd differential operators $\Delta $ to verify the homotopy Lie data is shown to produce the same results.
Classification : 17B55, 18G55
Keywords: homotopy Lie algebras; generalized Batalin-Vilkovisky algebras; Koszul brackets; higher antibrackets
@article{ARM_2009_45_4_a3,
     author = {Bering, Klaus and Lada, Tom},
     title = {Examples of homotopy {Lie} algebras},
     journal = {Archivum mathematicum},
     pages = {265--277},
     year = {2009},
     volume = {45},
     number = {4},
     mrnumber = {2591681},
     zbl = {1212.18015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a3/}
}
TY  - JOUR
AU  - Bering, Klaus
AU  - Lada, Tom
TI  - Examples of homotopy Lie algebras
JO  - Archivum mathematicum
PY  - 2009
SP  - 265
EP  - 277
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a3/
LA  - en
ID  - ARM_2009_45_4_a3
ER  - 
%0 Journal Article
%A Bering, Klaus
%A Lada, Tom
%T Examples of homotopy Lie algebras
%J Archivum mathematicum
%D 2009
%P 265-277
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a3/
%G en
%F ARM_2009_45_4_a3
Bering, Klaus; Lada, Tom. Examples of homotopy Lie algebras. Archivum mathematicum, Tome 45 (2009) no. 4, pp. 265-277. http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a3/

[1] Batalin, I. A., Vilkovisky, G. A.: Gauge algebra and quantization. Phys. Lett. 102B (1981), 27–31. | MR

[2] Bering, K.: Non-commutative Batalin-Vilkovisky algebras, homotopy Lie algebras and the Courant bracket. Comm. Math. Phys. 274 (2007), 297–34. | DOI | MR | Zbl

[3] Bering, K., Damgaard, P. H., Alfaro, J.: Algebra of higher antibrackets. Nuclear Phys. B 478 (1996), 459–504. | DOI | MR | Zbl

[4] Daily, M.: Examples of $L_m$ and $L_\infty $ structures on $V_0\oplus V_1$. unpublished notes.

[5] Daily, M., Lada, T.: A finite dimensional $L_\infty $ algebra example in gauge theory. Homotopy, Homology and Applications 7 (2005), 87–93. | MR | Zbl

[6] Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. Algebra 23 (1995), 2147–2161. | DOI | MR | Zbl

[7] Lada, T., Stasheff, J. D.: Introduction to sh Lie algebras for physicists. Internat. J. Theoret. Phys. 32 (1993), 1087–1103. | DOI | MR | Zbl