Keywords: homotopy Lie algebras; generalized Batalin-Vilkovisky algebras; Koszul brackets; higher antibrackets
@article{ARM_2009_45_4_a3,
author = {Bering, Klaus and Lada, Tom},
title = {Examples of homotopy {Lie} algebras},
journal = {Archivum mathematicum},
pages = {265--277},
year = {2009},
volume = {45},
number = {4},
mrnumber = {2591681},
zbl = {1212.18015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a3/}
}
Bering, Klaus; Lada, Tom. Examples of homotopy Lie algebras. Archivum mathematicum, Tome 45 (2009) no. 4, pp. 265-277. http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a3/
[1] Batalin, I. A., Vilkovisky, G. A.: Gauge algebra and quantization. Phys. Lett. 102B (1981), 27–31. | MR
[2] Bering, K.: Non-commutative Batalin-Vilkovisky algebras, homotopy Lie algebras and the Courant bracket. Comm. Math. Phys. 274 (2007), 297–34. | DOI | MR | Zbl
[3] Bering, K., Damgaard, P. H., Alfaro, J.: Algebra of higher antibrackets. Nuclear Phys. B 478 (1996), 459–504. | DOI | MR | Zbl
[4] Daily, M.: Examples of $L_m$ and $L_\infty $ structures on $V_0\oplus V_1$. unpublished notes.
[5] Daily, M., Lada, T.: A finite dimensional $L_\infty $ algebra example in gauge theory. Homotopy, Homology and Applications 7 (2005), 87–93. | MR | Zbl
[6] Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. Algebra 23 (1995), 2147–2161. | DOI | MR | Zbl
[7] Lada, T., Stasheff, J. D.: Introduction to sh Lie algebras for physicists. Internat. J. Theoret. Phys. 32 (1993), 1087–1103. | DOI | MR | Zbl