Constant Jacobi osculating rank of $\mathbf{U(3)/(U(1) \times U(1) \times U(1))}$
Archivum mathematicum, Tome 45 (2009) no. 4, pp. 241-254 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we obtain an interesting relation between the covariant derivatives of the Jacobi operator valid for all geodesic on the flag manifold $M^6=U(3)/(U(1) \times U(1) \times U(1))$. As a consequence, an explicit expression of the Jacobi operator independent of the geodesic can be obtained on such a manifold. Moreover, we show the way to calculate the Jacobi vector fields on this manifold by a new formula valid on every g.o. space.
In this paper we obtain an interesting relation between the covariant derivatives of the Jacobi operator valid for all geodesic on the flag manifold $M^6=U(3)/(U(1) \times U(1) \times U(1))$. As a consequence, an explicit expression of the Jacobi operator independent of the geodesic can be obtained on such a manifold. Moreover, we show the way to calculate the Jacobi vector fields on this manifold by a new formula valid on every g.o. space.
Classification : 53C20, 53C21, 53C22, 53C25, 53C30
Keywords: naturally reductive space; g.o. space; Jacobi operator; Jacobi osculating rank
@article{ARM_2009_45_4_a1,
     author = {Arias-Marco, Teresa},
     title = {Constant {Jacobi} osculating rank of $\mathbf{U(3)/(U(1) \times U(1) \times U(1))}$},
     journal = {Archivum mathematicum},
     pages = {241--254},
     year = {2009},
     volume = {45},
     number = {4},
     mrnumber = {2591679},
     zbl = {1212.53059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a1/}
}
TY  - JOUR
AU  - Arias-Marco, Teresa
TI  - Constant Jacobi osculating rank of $\mathbf{U(3)/(U(1) \times U(1) \times U(1))}$
JO  - Archivum mathematicum
PY  - 2009
SP  - 241
EP  - 254
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a1/
LA  - en
ID  - ARM_2009_45_4_a1
ER  - 
%0 Journal Article
%A Arias-Marco, Teresa
%T Constant Jacobi osculating rank of $\mathbf{U(3)/(U(1) \times U(1) \times U(1))}$
%J Archivum mathematicum
%D 2009
%P 241-254
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a1/
%G en
%F ARM_2009_45_4_a1
Arias-Marco, Teresa. Constant Jacobi osculating rank of $\mathbf{U(3)/(U(1) \times U(1) \times U(1))}$. Archivum mathematicum, Tome 45 (2009) no. 4, pp. 241-254. http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a1/

[1] Arias-Marco, T.: Constant Jacobi osculating rank of $U(3)/(U(1) \times U(1) \times U(1))$ -Appendix-. ArXiv:0906.2890v1. | MR

[2] Arias-Marco, T.: Study of homogeneous D’Atri spaces of the Jacobi operator on g.o. spaces and the locally homogeneous connections on 2-dimensional manifolds with the help of Mathematica$^{\scriptstyle {\bf ©}}$. thematica$^{\scriptstyle {\mathbf ©}}$, Universitat de València, Valencia, Spain, 2007, ISBN: 978-84-370-6838-1, http://www.tdx.cat/TDX-0911108-110640

[3] Arias-Marco, T.: Methods for solving the Jacobi equation. Constant osculating rank vs. constant Jacobi osculating rank. Differential Geometry Proceedings of the VIII International Colloquium, 2009, pp. 207–216. | MR | Zbl

[4] Arias-Marco, T., Naveira, A. M.: Constant Jacobi osculating rank of a g.o. space. A method to obtain explicitly the Jacobi operator. Publ. Math. Debrecen 74 (2009), 135–157. | MR | Zbl

[5] Chavel, I.: Isotropic Jacobi fields, and Jacobi’s equations on Riemannian homogeneous spaces. Comment. Math. Helvetici 42 (1967), 237–248. | DOI | MR | Zbl

[6] Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15 (1983), 35–42. | DOI | MR | Zbl

[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Interscience, New York, 1996.

[8] Kowalski, O., Prüfer, F., Vanhecke, L.: D’Atri spaces. Progr. Nonlinear Differential Equations Appl. 20 (1996), 241–284. | MR

[9] Macías-Virgós, E., Naveira, A. M., Tarrío, A.: The constant osculating rank of the Wilking manifold $V_3$. C. R. Acad. Sci. Paris, Ser. I. Math. 346 (2008), 67–70. | DOI | MR | Zbl

[10] Naveira, A. M., Tarrío, A.: A method for the resolution of the Jacobi equation $Y^{\prime \prime } + R Y = 0$ on the manifold $Sp(2)/SU(2)$. Monatsh. Math. 158 (3) (2008), 231–246. | DOI | Zbl

[11] Tsukada, K.: Totally geodesic submanifolds of Riemannian manifolds and curvature invariant subspaces. Kodai Math. J. 19 (1996), 395–437. | DOI | MR | Zbl