Keywords: naturally reductive space; g.o. space; Jacobi operator; Jacobi osculating rank
@article{ARM_2009_45_4_a1,
author = {Arias-Marco, Teresa},
title = {Constant {Jacobi} osculating rank of $\mathbf{U(3)/(U(1) \times U(1) \times U(1))}$},
journal = {Archivum mathematicum},
pages = {241--254},
year = {2009},
volume = {45},
number = {4},
mrnumber = {2591679},
zbl = {1212.53059},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a1/}
}
Arias-Marco, Teresa. Constant Jacobi osculating rank of $\mathbf{U(3)/(U(1) \times U(1) \times U(1))}$. Archivum mathematicum, Tome 45 (2009) no. 4, pp. 241-254. http://geodesic.mathdoc.fr/item/ARM_2009_45_4_a1/
[1] Arias-Marco, T.: Constant Jacobi osculating rank of $U(3)/(U(1) \times U(1) \times U(1))$ -Appendix-. ArXiv:0906.2890v1. | MR
[2] Arias-Marco, T.: Study of homogeneous D’Atri spaces of the Jacobi operator on g.o. spaces and the locally homogeneous connections on 2-dimensional manifolds with the help of Mathematica$^{\scriptstyle {\bf ©}}$. thematica$^{\scriptstyle {\mathbf ©}}$, Universitat de València, Valencia, Spain, 2007, ISBN: 978-84-370-6838-1, http://www.tdx.cat/TDX-0911108-110640
[3] Arias-Marco, T.: Methods for solving the Jacobi equation. Constant osculating rank vs. constant Jacobi osculating rank. Differential Geometry Proceedings of the VIII International Colloquium, 2009, pp. 207–216. | MR | Zbl
[4] Arias-Marco, T., Naveira, A. M.: Constant Jacobi osculating rank of a g.o. space. A method to obtain explicitly the Jacobi operator. Publ. Math. Debrecen 74 (2009), 135–157. | MR | Zbl
[5] Chavel, I.: Isotropic Jacobi fields, and Jacobi’s equations on Riemannian homogeneous spaces. Comment. Math. Helvetici 42 (1967), 237–248. | DOI | MR | Zbl
[6] Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15 (1983), 35–42. | DOI | MR | Zbl
[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Interscience, New York, 1996.
[8] Kowalski, O., Prüfer, F., Vanhecke, L.: D’Atri spaces. Progr. Nonlinear Differential Equations Appl. 20 (1996), 241–284. | MR
[9] Macías-Virgós, E., Naveira, A. M., Tarrío, A.: The constant osculating rank of the Wilking manifold $V_3$. C. R. Acad. Sci. Paris, Ser. I. Math. 346 (2008), 67–70. | DOI | MR | Zbl
[10] Naveira, A. M., Tarrío, A.: A method for the resolution of the Jacobi equation $Y^{\prime \prime } + R Y = 0$ on the manifold $Sp(2)/SU(2)$. Monatsh. Math. 158 (3) (2008), 231–246. | DOI | Zbl
[11] Tsukada, K.: Totally geodesic submanifolds of Riemannian manifolds and curvature invariant subspaces. Kodai Math. J. 19 (1996), 395–437. | DOI | MR | Zbl