On the Lipschitz operator algebras
Archivum mathematicum, Tome 45 (2009) no. 3, pp. 213-222 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an $\alpha $-Lipschitz operator from a compact metric space into a Banach space $A$ is defined and characterized in a natural way in the sence that $F:K\rightarrow A$ is a $\alpha $-Lipschitz operator if and only if for each $\sigma \in X^*$ the mapping $\sigma \circ F$ is a $\alpha $-Lipschitz function. The Lipschitz operators algebras $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are isometrically isomorphic to $L^{\alpha }(K)\check{\otimes }A$ and $l^{\alpha }(K)\check{\otimes }A$ respectively. Also we study homomorphisms on the $L^\alpha _A(X,B)$.
In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an $\alpha $-Lipschitz operator from a compact metric space into a Banach space $A$ is defined and characterized in a natural way in the sence that $F:K\rightarrow A$ is a $\alpha $-Lipschitz operator if and only if for each $\sigma \in X^*$ the mapping $\sigma \circ F$ is a $\alpha $-Lipschitz function. The Lipschitz operators algebras $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are isometrically isomorphic to $L^{\alpha }(K)\check{\otimes }A$ and $l^{\alpha }(K)\check{\otimes }A$ respectively. Also we study homomorphisms on the $L^\alpha _A(X,B)$.
Classification : 46H25, 46J10, 47B48
Keywords: Lipschitz algebras; amenability; homomorphism
@article{ARM_2009_45_3_a5,
     author = {Ebadian, A. and Shokri, A. A.},
     title = {On the {Lipschitz} operator algebras},
     journal = {Archivum mathematicum},
     pages = {213--222},
     year = {2009},
     volume = {45},
     number = {3},
     mrnumber = {2591677},
     zbl = {1211.47074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a5/}
}
TY  - JOUR
AU  - Ebadian, A.
AU  - Shokri, A. A.
TI  - On the Lipschitz operator algebras
JO  - Archivum mathematicum
PY  - 2009
SP  - 213
EP  - 222
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a5/
LA  - en
ID  - ARM_2009_45_3_a5
ER  - 
%0 Journal Article
%A Ebadian, A.
%A Shokri, A. A.
%T On the Lipschitz operator algebras
%J Archivum mathematicum
%D 2009
%P 213-222
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a5/
%G en
%F ARM_2009_45_3_a5
Ebadian, A.; Shokri, A. A. On the Lipschitz operator algebras. Archivum mathematicum, Tome 45 (2009) no. 3, pp. 213-222. http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a5/

[1] Alimohammadi, D., Ebadian, A.: Headberg’s theorem in real Lipschitz algebras. Indian J. Pure Appl. Math. 32 (2001), 1479–1493. | MR

[2] Bade, W. G., Curtis, P. C., Dales, H. G.: Amenability and weak amenability for Berurling and Lipschitz algebras. Proc. London Math. Soc. 55 (3) (1987), 359–377. | MR

[3] Cao, H. X., Xu, Z. B.: Some properties of Lipschitz-$\alpha $ operators. Acta Math. Sin. (Engl. Ser.) 45 (2) (2002), 279–286. | MR

[4] Cao, H. X., Zhang, J. H., Xu, Z. B.: Characterizations and extentions of Lipschitz-$\alpha $ operators. Acta Math. Sin. (Engl. Ser.) 22 (3) (2006), 671–678. | DOI | MR

[5] Dales, H. G.: Banach Algebras and Automatic Continuty. Clarendon Press, Oxford, 2000. | MR

[6] Ebadian, A.: Prime ideals in Lipschitz algebras of finite differentable function. Honam Math. J. 22 (2000), 21–30. | MR

[7] Honary, T. G, Mahyar, H.: Approximation in Lipschitz algebras. Quaest. Math. 23 (2000), 13–19. | DOI | MR | Zbl

[8] Johnson, B. E.: Cohomology in Banach algebras. Mem. Amer. Math. Soc. 127 (1972). | MR | Zbl

[9] Johnson, B. E.: Lipschitz spaces. Pacific J. Math. 51 (1975), 177–186. | DOI | MR

[10] Runde, V.: Lectures on Amenability. Springer, 2001. | MR

[11] Sherbert, D. R.: Banach algebras of Lipschitz functions. Pacific J. Math. 3 (1963), 1387–1399. | DOI | MR | Zbl

[12] Sherbert, D. R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions. Trans. Amer. Math. Soc. 111 (1964), 240–272. | DOI | MR | Zbl

[13] Weaver, N.: Subalgebras of little Lipschitz algebras. Pacific J. Math. 173 (1996), 283–293. | MR | Zbl

[14] Weaver, N.: Lipschitz Algebras. World Scientific Publishing Co., Inc., River Edge, NJ, 1999. | MR | Zbl