Linearized Oscillation of Nonlinear Difference Equations with Advanced Arguments
Archivum mathematicum, Tome 45 (2009) no. 3, pp. 203-212 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with the nonlinear advanced difference equation with constant coefficients \[ x_{n+1}-x_{n}+\sum _{i=1}^{m}p_{i}f_{i}(x_{n-k_{i}})=0\,,\quad n=0,1,\dots \] where $p_{i}\in (-\infty ,0)$ and $k_{i}\in \lbrace \dots ,-2,-1\rbrace $ for $i=1,2,\dots ,m$. We obtain sufficient conditions and also necessary and sufficient conditions for the oscillation of all solutions of the difference equation above by comparing with the associated linearized difference equation. Furthermore, oscillation criteria are established for the nonlinear advanced difference equation with variable coefficients \[ x_{n+1}-x_{n}+\sum _{i=1}^{m}p_{in}f_{i}(x_{n-k_{i}})=0\,,\quad n=0,1,\dots \] where $p_{in}\le 0$ and $k_{i}\in \lbrace \dots ,-2,-1\rbrace $ for $i=1,2,\dots , m$.
This paper is concerned with the nonlinear advanced difference equation with constant coefficients \[ x_{n+1}-x_{n}+\sum _{i=1}^{m}p_{i}f_{i}(x_{n-k_{i}})=0\,,\quad n=0,1,\dots \] where $p_{i}\in (-\infty ,0)$ and $k_{i}\in \lbrace \dots ,-2,-1\rbrace $ for $i=1,2,\dots ,m$. We obtain sufficient conditions and also necessary and sufficient conditions for the oscillation of all solutions of the difference equation above by comparing with the associated linearized difference equation. Furthermore, oscillation criteria are established for the nonlinear advanced difference equation with variable coefficients \[ x_{n+1}-x_{n}+\sum _{i=1}^{m}p_{in}f_{i}(x_{n-k_{i}})=0\,,\quad n=0,1,\dots \] where $p_{in}\le 0$ and $k_{i}\in \lbrace \dots ,-2,-1\rbrace $ for $i=1,2,\dots , m$.
Classification : 34K11, 39A10, 39A12, 39A21
Keywords: advanced difference equation; delay difference equation; nonlinear; oscillation
@article{ARM_2009_45_3_a4,
     author = {\"Ocalan, \"Ozkan},
     title = {Linearized {Oscillation} of {Nonlinear} {Difference} {Equations} with {Advanced} {Arguments}},
     journal = {Archivum mathematicum},
     pages = {203--212},
     year = {2009},
     volume = {45},
     number = {3},
     mrnumber = {2591676},
     zbl = {1212.39005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a4/}
}
TY  - JOUR
AU  - Öcalan, Özkan
TI  - Linearized Oscillation of Nonlinear Difference Equations with Advanced Arguments
JO  - Archivum mathematicum
PY  - 2009
SP  - 203
EP  - 212
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a4/
LA  - en
ID  - ARM_2009_45_3_a4
ER  - 
%0 Journal Article
%A Öcalan, Özkan
%T Linearized Oscillation of Nonlinear Difference Equations with Advanced Arguments
%J Archivum mathematicum
%D 2009
%P 203-212
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a4/
%G en
%F ARM_2009_45_3_a4
Öcalan, Özkan. Linearized Oscillation of Nonlinear Difference Equations with Advanced Arguments. Archivum mathematicum, Tome 45 (2009) no. 3, pp. 203-212. http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a4/

[1] Agarwal, R. P.: Difference Equations and Inequalities. Marcel Dekker, New York, 2000. | MR | Zbl

[2] Elaydi, S.: An Introduction to Difference Equation. Springer-Verlag, New York, 1999. | MR

[3] Erbe, L. H., Zhang, B. G.: Oscillation of discrete analogues of delay equations. Differential Integral Equations 2 (3) (1989), 300–309. | MR | Zbl

[4] Györi, I., Ladas, G.: Linearized oscillations for equations with piecewise constant arguments. Differential Integral Equations 2 (1989), 123–131. | MR

[5] Györi, I., Ladas, G.: Oscillation theory of delay differential equations with applications. Clarendon Press, Oxford, 1991. | MR

[6] Ladas, G.: Oscillations of equations with piecewise constant mixed arguments. International Conference on Differential Equations and Population Biology, Ohio University, March 21-25, New York, 1988. | MR | Zbl

[7] Ladas, G.: Explicit conditions for the oscillation of difference equations. J. Math. Anal. Appl. 153 (1990), 276–287. | DOI | MR | Zbl

[8] Öcalan, Ö.: Oscillation of nonlinear difference equations with several coefficients. Commun. Math. Anal. 4 (1) (2008), 35–44. | MR | Zbl

[9] Öcalan, Ö., Akin, Ö.: Oscillation properties for advanced difference equations. Novi Sad J. Math. 37 (1) (2007), 39–47. | MR | Zbl