On the geometry of some para-hypercomplex Lie groups
Archivum mathematicum, Tome 45 (2009) no. 3, pp. 159-170 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in all cases. Some of these Finsler Lie groups are of non-positive flag curvature.
In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in all cases. Some of these Finsler Lie groups are of non-positive flag curvature.
Classification : 53B35, 53C15, 53C60, 58B20
Keywords: para-hypercomplex structure; left invariant Riemannian metric; Randers metric; Berwald metric; sectional curvature; flag curvature
@article{ARM_2009_45_3_a0,
     author = {Salimi Moghaddam, H. R.},
     title = {On the geometry of some para-hypercomplex {Lie} groups},
     journal = {Archivum mathematicum},
     pages = {159--170},
     year = {2009},
     volume = {45},
     number = {3},
     mrnumber = {2591672},
     zbl = {1212.53053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a0/}
}
TY  - JOUR
AU  - Salimi Moghaddam, H. R.
TI  - On the geometry of some para-hypercomplex Lie groups
JO  - Archivum mathematicum
PY  - 2009
SP  - 159
EP  - 170
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a0/
LA  - en
ID  - ARM_2009_45_3_a0
ER  - 
%0 Journal Article
%A Salimi Moghaddam, H. R.
%T On the geometry of some para-hypercomplex Lie groups
%J Archivum mathematicum
%D 2009
%P 159-170
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a0/
%G en
%F ARM_2009_45_3_a0
Salimi Moghaddam, H. R. On the geometry of some para-hypercomplex Lie groups. Archivum mathematicum, Tome 45 (2009) no. 3, pp. 159-170. http://geodesic.mathdoc.fr/item/ARM_2009_45_3_a0/

[1] Antonelli, P. L., Ingarden, R. S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Kluwer Academic Publishers, 1993. | MR | Zbl

[2] Asanov, G. S.: Finsler Geometry, Relativity and Gauge Theories. D. Reidel Publishing Company, 1985. | MR | Zbl

[3] Bao, D., Chern, S. S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, Berlin, 2000. | MR | Zbl

[4] Barberis, M. L.: Hypercomplex structures on four-dimensional Lie groups. Proc. Amer. Math. Soc. 125 (4) (1997), 1043–1054. | DOI | MR | Zbl

[5] Barberis, M. L.: Hyper-Kahler Metrics Conformal to Left Invariant Metrics on Four-Dimensional Lie Groups. Math. Phys. Anal. Geom. 6 (2003), 1–8. | DOI | MR | Zbl

[6] Blažić, N., Vukmirović, S.: Four-dimensional Lie algebras with a para-hypercomplex structure. preprint, arxiv:math/0310180v1 [math.DG] (2003). | MR

[7] Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry II. Hypermultiplets and the $c-$map. Tech. report, Institute of Physics Publishing for SISSA, 2005. | MR

[8] Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A, Math. Gen. 37 (2004), 4353–4360. | DOI | MR | Zbl

[9] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds. J. Phys. A, Math. Gen. 37 (2004), 4353–4360. | DOI | MR | Zbl

[10] Esrafilian, E., Moghaddam, H. R. Salimi: Flag curvature of invariant Randers metrics on homogeneous manifolds. J. Phys. A, Math. Gen. 39 (2006), 3319–3324. | DOI | MR

[11] Esrafilian, E., Moghaddam, H. R. Salimi: Induced invariant Finsler metrics on quotient groups. Balkan J. Geom. Appl. 11 (1) (2006), 73–79. | MR

[12] Gibbons, G. W., Papadopoulos, G., Stelle, K. S.: HKT and OKT geometries on soliton black hole moduli spaces. Nuclear Phys. B 508 (1997), 623–658. | MR | Zbl

[13] Moghaddam, H. R. Salimi: Flag curvature of invariant $(\alpha ,\beta )$-metrics of type $\frac{(\alpha +\beta )^2}{\alpha }$. J. Phys. A, Math. Theor. 41 (24), Article ID 275206, 6pp. | MR

[14] Moghaddam, H. R. Salimi: On the flag curvature of invariant Randers metrics. Math. Phys. Anal. Geom. 11 (2008), 1–9. | DOI | MR

[15] Moghaddam, H. R. Salimi: On some hypercomplex 4-dimensional Lie groups of constant scalar curvature. Internat. J. Geom. Methods in Modern Phys. 6 (4) (2009), 619–624. | DOI | MR

[16] Moghaddam, H. R. Salimi: Randers metrics of Berwald type on 4-dimensional hypercomplex Lie groups. J. Phys. A, Math. Theor. 095212 42 (2009), ID 095212, 7pp. | DOI | MR

[17] Moghaddam, H. R. Salimi: Some Berwald spaces of non-positive flag curvature. J. Geom. Phys. 59 (2009), 969–975. | DOI | MR

[18] Poon, Y. S.: Examples of hyper-Kähler connections with torsion. Vienna, preprint ESI, 770 (1999), 1-7. | MR | Zbl

[19] Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59 (1941), 195–199. | DOI | MR | Zbl

[20] Shen, Z.: Lectures on Finsler Geometry. World Scientific, 2001. | MR | Zbl