Keywords: nonexpansive mapping; strict pseudocontraction; fixed point; variational inequality; relaxed cocoercive mapping
@article{ARM_2009_45_2_a7,
author = {Qin, Xiaolong and Kang, Shin Min and Su, Yongfu and Shang, Meijuan},
title = {Strong convergence of an iterative method for variational inequality problems and fixed point problems},
journal = {Archivum mathematicum},
pages = {147--158},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2591671},
zbl = {1210.47097},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a7/}
}
TY - JOUR AU - Qin, Xiaolong AU - Kang, Shin Min AU - Su, Yongfu AU - Shang, Meijuan TI - Strong convergence of an iterative method for variational inequality problems and fixed point problems JO - Archivum mathematicum PY - 2009 SP - 147 EP - 158 VL - 45 IS - 2 UR - http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a7/ LA - en ID - ARM_2009_45_2_a7 ER -
%0 Journal Article %A Qin, Xiaolong %A Kang, Shin Min %A Su, Yongfu %A Shang, Meijuan %T Strong convergence of an iterative method for variational inequality problems and fixed point problems %J Archivum mathematicum %D 2009 %P 147-158 %V 45 %N 2 %U http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a7/ %G en %F ARM_2009_45_2_a7
Qin, Xiaolong; Kang, Shin Min; Su, Yongfu; Shang, Meijuan. Strong convergence of an iterative method for variational inequality problems and fixed point problems. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 147-158. http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a7/
[1] Browder, F. E.: Fixed point theorems for noncompact mappings in Hilbert spaces. Proc. Natl. Acad. Sci. USA 53 (1965), 1272–1276. | DOI | MR
[2] Browder, F. E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Sympos. Pure Math. 18 (1976), 78–81. | MR | Zbl
[3] Bruck, R. E.: Properties of fixed point sets of nonexpansive mappings in Banach spaces. Trans. Amer. Math. Soc. 179 (1973), 251–262. | DOI | MR | Zbl
[4] Ceng, L. C., Wang, C. Y., Yao, J. C.: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67 (2008), 375–390. | DOI | MR | Zbl
[5] Ceng, L. C., Yao, J. C.: An extragradient-like approximation method for variational inequality problems and fixed point problems. Appl. Math. Comput. 190 (2007), 205–215. | DOI | MR | Zbl
[6] Chen, J. M., Zhang, L. J., Fan, T. G.: Viscosity approximation methods for nonexpansive mappings and monotone mappings. J. Math. Anal. Appl. 334 (2007), 1450–1461. | DOI | MR | Zbl
[7] Gabay, D.: Applications of the Method of Multipliers to Variational Inequalities, Augmented Lagrangian Methods. North-Holland, Amsterdam.
[8] Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 61 (2005), 341–350. | DOI | MR | Zbl
[9] Korpelevich, G. M.: An extragradient method for finding saddle points and for other problems. Ekonomika i matematicheskie metody 12 (1976), 747–756. | MR
[10] Moudafi, A.: Viscosity approximation methods for fixed points problems. Appl. Math. Comput. 241 (2000), 46–55. | MR | Zbl
[11] Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128 (2006), 191–201. | DOI | MR | Zbl
[12] Noor, M. A.: Some developments in general variational inequalities. Appl. Math. Comput. 152 (2004), 199–277. | MR | Zbl
[13] Noor, M. A., Yao, Y.: Three-step iterations for variational inequalities and nonexpansive mappings. Appl. Math. Comput. 190 (2007), 1312–1321. | DOI | MR | Zbl
[14] Qin, X., Shang, M., Su, Y.: Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems. Math. Comput. Modelling 48 (2008), 1033–1046. | DOI | MR | Zbl
[15] Qin, X., Shang, M., Zhou, H.: Strong convergence of a general iterative method for variational inequality problems and fixed point problems in Hilbert spaces. Appl. Math. Comput. 200 (2008), 242–253. | DOI | MR | Zbl
[16] Stampacchia, G.: ormes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Sci. Paris Sér. I Math. 258 (1964), 4413–4416. | MR
[17] Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochne integrals. J. Math. Anal. Appl. 305 (2005), 227–239. | DOI | MR
[18] Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118 (2003), 417–428. | DOI | MR | Zbl
[19] Verma, R. U.: Generalized system for relaxed cocoercive variational inequalities and its projection methods. J. Optim. Theory Appl. 121 (2004), 203–210. | DOI | MR
[20] Verma, R. U.: General convergence analysis for two-step projection methods and application to variational problems. Appl. Math. Lett. 18 (2005), 1286–1292. | DOI | MR
[21] Xu, H. K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66 (2002), 240–256. | DOI | MR | Zbl
[22] Yao, Y., Yao, J. C.: On modified iterative method for nonexpansive mappings and monotone mappings. Appl. Math. Comput. 186 (2007), 1551–1558. | DOI | MR | Zbl
[23] Zhou, H.: Convergence theorems of fixed points for $k$-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69 (2008), 456–462. | DOI | MR
[24] Zhou, H.: Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 343 (2008), 546–556. | DOI | MR | Zbl