Keywords: nonlinear wave equations; quenching; convergence; numerical quenching time
@article{ARM_2009_45_2_a4,
author = {N{\textquoteright}gohisse, Firmin K. and Boni, Th\'eodore K.},
title = {Quenching time of some nonlinear wave equations},
journal = {Archivum mathematicum},
pages = {115--124},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2591668},
zbl = {1212.35016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a4/}
}
N’gohisse, Firmin K.; Boni, Théodore K. Quenching time of some nonlinear wave equations. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 115-124. http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a4/
[1] Abia, L. M., López-Marcos, J. C., Martínez, J.: On the blow-up time convergence of semidiscretizations of reaction-diffusion equations. Appl. Numer. Math. 26 (1998), 399–414. | DOI | MR
[2] Boni, T. K.: On quenching of solution for some semilinear parabolic equation of second order. Bull. Belg. Math. Soc. 5 (2000), 73–95. | MR
[3] Boni, T. K.: Extinction for discretizations of some semilinear parabolic equations. C. R. Acad. Sci. Paris Sér. I Math. 333 (8) (2001), 795–800. | DOI | MR | Zbl
[4] Chang, H., Levine, H. A.: The quenching of solutions of semilinear hyperbolic equations. SIAM J. Math. Anal. 12 (1982), 893–903. | DOI | MR
[5] Friedman, A., Lacey, A. A.: The blow-up time for solutions of nonlinear heat equations with small diffusion. SIAM J. Math. Anal. 18 (1987), 711–721. | DOI | MR | Zbl
[6] Glassey, R. T.: Blow-up theorems for nonlinear wave equations. Math. Z. 132 (1973), 183–203. | DOI | MR | Zbl
[7] Kaplan, S.: On the growth of solutions of quasi-linear parabolic equations. Comm. Pure Appl. Math. 16 (1963), 305–330. | DOI | MR | Zbl
[8] Keller, J. B.: On solutions of nonlinear wave equations. Comm. Pure Appl. Math. 10 (1957), 523–530. | DOI | MR | Zbl
[9] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $\rho u_{tt}=-Av+F(u)$. Trans. Amer. Math. Soc. 192 (1974), 1–21. | MR
[10] Levine, H. A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 5 (1974), 138–146. | DOI | MR | Zbl
[11] Levine, H. A.: The quenching solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. SIAM J. Math. Anal. 14 (1983), 1139–1153. | DOI | MR
[12] Levine, H. A.: The phenomenon of quenching: A survey . Proc. VIth International Conference on Trends in the Theory and Practice of Nonlinear Analysis (Lakshmitanthan, V., ed.), Elservier Nork-Holland, New York, 1985. | MR | Zbl
[13] Levine, H. A., Smiley, M. W.: The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. J. Math. Anal. Appl. 103 (1984), 409–427. | MR
[14] Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, NJ, 1967. | MR
[15] Rammaha, M. A.: On the quenching of solutions of the wave equation with a nonlinear boundary condition. J. Reine Angew. Math. 407 (1990), 1–18. | MR | Zbl
[16] Reed, M.: Abstract nonlinear wave equations. Lecture Notes in Math., vol. 507, Springer-Verlag Berlin, New-York, 1976. | MR | Zbl
[17] Sattinger, D. H.: On global solution of nonlinear hyperbolic equations. Arch. Rational Mech. Anal. 30 (1968), 148–172. | DOI | MR | Zbl
[18] Smith, R. A.: On a hyperbolic quenching problem in several dimensions. SIAM J. Math. Anal. 20 (1989), 1081–1094. | DOI | MR | Zbl
[19] Walter, W.: Differential-und Integral-Ungleichungen. Springer, Berlin, 1954.