Quenching time of some nonlinear wave equations
Archivum mathematicum, Tome 45 (2009) no. 2, pp. 115-124 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider the following initial-boundary value problem \[ {\left\rbrace \begin{array}{ll} u_{tt}(x,t)=\varepsilon Lu(x,t)+f\big (u(x,t)\big )\quad \mbox {in}\quad \Omega \times (0,T)\,,\\ u(x,t)=0 \quad \mbox {on}\quad \partial \Omega \times (0,T)\,, \\ u(x,0)=0 \quad \mbox {in}\quad \Omega \,, \\ u_t(x,0)=0 \quad \mbox {in}\quad \Omega \,, \end{array}\right.}\] where $\Omega $ is a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega $, $L$ is an elliptic operator, $\varepsilon $ is a positive parameter, $f(s)$ is a positive, increasing, convex function for $s\in (-\infty ,b)$, $\lim _{s\rightarrow b}f(s)=\infty $ and $\int _0^b\frac{ds}{f(s)}\infty $ with $b=\operatorname{const}>0$. Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation \[ {\left\rbrace \begin{array}{ll} \alpha ^{\prime \prime }(t)=f(\alpha (t))\,,\quad t>0\,, \\ \alpha (0)=0\,,\quad \alpha ^{\prime }(0)=0\,, \end{array}\right.}\] as $\varepsilon $ goes to zero. We also show that the above result remains valid if the domain $\Omega $ is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.
In this paper, we consider the following initial-boundary value problem \[ {\left\rbrace \begin{array}{ll} u_{tt}(x,t)=\varepsilon Lu(x,t)+f\big (u(x,t)\big )\quad \mbox {in}\quad \Omega \times (0,T)\,,\\ u(x,t)=0 \quad \mbox {on}\quad \partial \Omega \times (0,T)\,, \\ u(x,0)=0 \quad \mbox {in}\quad \Omega \,, \\ u_t(x,0)=0 \quad \mbox {in}\quad \Omega \,, \end{array}\right.}\] where $\Omega $ is a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega $, $L$ is an elliptic operator, $\varepsilon $ is a positive parameter, $f(s)$ is a positive, increasing, convex function for $s\in (-\infty ,b)$, $\lim _{s\rightarrow b}f(s)=\infty $ and $\int _0^b\frac{ds}{f(s)}\infty $ with $b=\operatorname{const}>0$. Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation \[ {\left\rbrace \begin{array}{ll} \alpha ^{\prime \prime }(t)=f(\alpha (t))\,,\quad t>0\,, \\ \alpha (0)=0\,,\quad \alpha ^{\prime }(0)=0\,, \end{array}\right.}\] as $\varepsilon $ goes to zero. We also show that the above result remains valid if the domain $\Omega $ is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.
Classification : 35B40, 35B50, 35L20, 35L70, 65M06
Keywords: nonlinear wave equations; quenching; convergence; numerical quenching time
@article{ARM_2009_45_2_a4,
     author = {N{\textquoteright}gohisse, Firmin K. and Boni, Th\'eodore K.},
     title = {Quenching time of some nonlinear wave equations},
     journal = {Archivum mathematicum},
     pages = {115--124},
     year = {2009},
     volume = {45},
     number = {2},
     mrnumber = {2591668},
     zbl = {1212.35016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a4/}
}
TY  - JOUR
AU  - N’gohisse, Firmin K.
AU  - Boni, Théodore K.
TI  - Quenching time of some nonlinear wave equations
JO  - Archivum mathematicum
PY  - 2009
SP  - 115
EP  - 124
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a4/
LA  - en
ID  - ARM_2009_45_2_a4
ER  - 
%0 Journal Article
%A N’gohisse, Firmin K.
%A Boni, Théodore K.
%T Quenching time of some nonlinear wave equations
%J Archivum mathematicum
%D 2009
%P 115-124
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a4/
%G en
%F ARM_2009_45_2_a4
N’gohisse, Firmin K.; Boni, Théodore K. Quenching time of some nonlinear wave equations. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 115-124. http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a4/

[1] Abia, L. M., López-Marcos, J. C., Martínez, J.: On the blow-up time convergence of semidiscretizations of reaction-diffusion equations. Appl. Numer. Math. 26 (1998), 399–414. | DOI | MR

[2] Boni, T. K.: On quenching of solution for some semilinear parabolic equation of second order. Bull. Belg. Math. Soc. 5 (2000), 73–95. | MR

[3] Boni, T. K.: Extinction for discretizations of some semilinear parabolic equations. C. R. Acad. Sci. Paris Sér. I Math. 333 (8) (2001), 795–800. | DOI | MR | Zbl

[4] Chang, H., Levine, H. A.: The quenching of solutions of semilinear hyperbolic equations. SIAM J. Math. Anal. 12 (1982), 893–903. | DOI | MR

[5] Friedman, A., Lacey, A. A.: The blow-up time for solutions of nonlinear heat equations with small diffusion. SIAM J. Math. Anal. 18 (1987), 711–721. | DOI | MR | Zbl

[6] Glassey, R. T.: Blow-up theorems for nonlinear wave equations. Math. Z. 132 (1973), 183–203. | DOI | MR | Zbl

[7] Kaplan, S.: On the growth of solutions of quasi-linear parabolic equations. Comm. Pure Appl. Math. 16 (1963), 305–330. | DOI | MR | Zbl

[8] Keller, J. B.: On solutions of nonlinear wave equations. Comm. Pure Appl. Math. 10 (1957), 523–530. | DOI | MR | Zbl

[9] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $\rho u_{tt}=-Av+F(u)$. Trans. Amer. Math. Soc. 192 (1974), 1–21. | MR

[10] Levine, H. A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 5 (1974), 138–146. | DOI | MR | Zbl

[11] Levine, H. A.: The quenching solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. SIAM J. Math. Anal. 14 (1983), 1139–1153. | DOI | MR

[12] Levine, H. A.: The phenomenon of quenching: A survey . Proc. VIth International Conference on Trends in the Theory and Practice of Nonlinear Analysis (Lakshmitanthan, V., ed.), Elservier Nork-Holland, New York, 1985. | MR | Zbl

[13] Levine, H. A., Smiley, M. W.: The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. J. Math. Anal. Appl. 103 (1984), 409–427. | MR

[14] Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, NJ, 1967. | MR

[15] Rammaha, M. A.: On the quenching of solutions of the wave equation with a nonlinear boundary condition. J. Reine Angew. Math. 407 (1990), 1–18. | MR | Zbl

[16] Reed, M.: Abstract nonlinear wave equations. Lecture Notes in Math., vol. 507, Springer-Verlag Berlin, New-York, 1976. | MR | Zbl

[17] Sattinger, D. H.: On global solution of nonlinear hyperbolic equations. Arch. Rational Mech. Anal. 30 (1968), 148–172. | DOI | MR | Zbl

[18] Smith, R. A.: On a hyperbolic quenching problem in several dimensions. SIAM J. Math. Anal. 20 (1989), 1081–1094. | DOI | MR | Zbl

[19] Walter, W.: Differential-und Integral-Ungleichungen. Springer, Berlin, 1954.