Keywords: conformally Einstein manifolds; positive Ricci curvature
@article{ARM_2009_45_2_a3,
author = {Ruiz, Juan Miguel},
title = {On metrics of positive {Ricci} curvature conformal to $M\times \mathbf{R}^m$},
journal = {Archivum mathematicum},
pages = {105--113},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2591667},
zbl = {1212.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a3/}
}
Ruiz, Juan Miguel. On metrics of positive Ricci curvature conformal to $M\times \mathbf{R}^m$. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 105-113. http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a3/
[1] Akutagawa, K., Florit, L., Petean, J.: On Yamabe constants of Riemannian products. Comm. Anal. Geom. 15 (5) (2007), 947–969, e-print math. DG/0603486. | MR | Zbl
[2] Besse, A.: Einstein manifolds. Ergeb. Math. Grenzgeb (3), 10, Springer, Berlin, 1987. | MR | Zbl
[3] Gover, R., Nurowski, P.: Obstructions to conformally Einstein metrics in n dimensions. J. Geom. Phys. 56 (2006), 450–484. | DOI | MR | Zbl
[4] Ilias, S.: Constantes explicites pour les inegalites de Sobolev sur les varietes riemannianes compactes. Ann. Inst. Fourier (Grenoble) 33 (2), 151–165. | DOI | MR
[5] Listing, M.: Conformal Einstein spaces in N-dimensions. Ann. Global Anal. Geom. 20 (2001), 183–197. | DOI | MR | Zbl
[6] Listing, M.: Conformal Einstein spaces in N-dimensions II. J. Geom. Phys. 56 (2006), 386–404. | DOI | MR | Zbl
[7] Moroianu, A., Ornea, L.: Conformally Einstein products and nearly Kähler manifolds. Ann. Global Anal. Geom. 22 (2008 (1)), 11–18, arXiv:math./0610599v3 [math.DG] (2007). | MR
[8] Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differential Geometry 6 (1971), 247–248. | MR | Zbl
[9] Petean, J.: Isoperimetric regions in spherical cones and Yamabe constants of $M\times S^1$. Geom. Dedicata (2009), to appear. | MR | Zbl