On metrics of positive Ricci curvature conformal to $M\times \mathbf{R}^m$
Archivum mathematicum, Tome 45 (2009) no. 2, pp. 105-113 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf{R^m} \rightarrow \mathbf{R^+}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.
Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf{R^m} \rightarrow \mathbf{R^+}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.
Classification : 53A30, 53C21, 53C25
Keywords: conformally Einstein manifolds; positive Ricci curvature
@article{ARM_2009_45_2_a3,
     author = {Ruiz, Juan Miguel},
     title = {On metrics of positive {Ricci} curvature conformal to $M\times \mathbf{R}^m$},
     journal = {Archivum mathematicum},
     pages = {105--113},
     year = {2009},
     volume = {45},
     number = {2},
     mrnumber = {2591667},
     zbl = {1212.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a3/}
}
TY  - JOUR
AU  - Ruiz, Juan Miguel
TI  - On metrics of positive Ricci curvature conformal to $M\times \mathbf{R}^m$
JO  - Archivum mathematicum
PY  - 2009
SP  - 105
EP  - 113
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a3/
LA  - en
ID  - ARM_2009_45_2_a3
ER  - 
%0 Journal Article
%A Ruiz, Juan Miguel
%T On metrics of positive Ricci curvature conformal to $M\times \mathbf{R}^m$
%J Archivum mathematicum
%D 2009
%P 105-113
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a3/
%G en
%F ARM_2009_45_2_a3
Ruiz, Juan Miguel. On metrics of positive Ricci curvature conformal to $M\times \mathbf{R}^m$. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 105-113. http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a3/

[1] Akutagawa, K., Florit, L., Petean, J.: On Yamabe constants of Riemannian products. Comm. Anal. Geom. 15 (5) (2007), 947–969, e-print math. DG/0603486. | MR | Zbl

[2] Besse, A.: Einstein manifolds. Ergeb. Math. Grenzgeb (3), 10, Springer, Berlin, 1987. | MR | Zbl

[3] Gover, R., Nurowski, P.: Obstructions to conformally Einstein metrics in n dimensions. J. Geom. Phys. 56 (2006), 450–484. | DOI | MR | Zbl

[4] Ilias, S.: Constantes explicites pour les inegalites de Sobolev sur les varietes riemannianes compactes. Ann. Inst. Fourier (Grenoble) 33 (2), 151–165. | DOI | MR

[5] Listing, M.: Conformal Einstein spaces in N-dimensions. Ann. Global Anal. Geom. 20 (2001), 183–197. | DOI | MR | Zbl

[6] Listing, M.: Conformal Einstein spaces in N-dimensions II. J. Geom. Phys. 56 (2006), 386–404. | DOI | MR | Zbl

[7] Moroianu, A., Ornea, L.: Conformally Einstein products and nearly Kähler manifolds. Ann. Global Anal. Geom. 22 (2008 (1)), 11–18, arXiv:math./0610599v3 [math.DG] (2007). | MR

[8] Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differential Geometry 6 (1971), 247–248. | MR | Zbl

[9] Petean, J.: Isoperimetric regions in spherical cones and Yamabe constants of $M\times S^1$. Geom. Dedicata (2009), to appear. | MR | Zbl