A generalization of Steenrod’s approximation theorem
Archivum mathematicum, Tome 45 (2009) no. 2, pp. 95-104 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous functions), preserving the section on regions where it is already smooth.
In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous functions), preserving the section on regions where it is already smooth.
Classification : 57R10, 57R12, 58B05
Keywords: infinite-dimensional manifold; infinite-dimensional smooth bundle; smoothing of continuous sections; density of smooth in continuous sections; topology on spaces of continuous functions
@article{ARM_2009_45_2_a2,
     author = {Wockel, Christoph},
     title = {A generalization of {Steenrod{\textquoteright}s} approximation theorem},
     journal = {Archivum mathematicum},
     pages = {95--104},
     year = {2009},
     volume = {45},
     number = {2},
     mrnumber = {2591666},
     zbl = {1212.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a2/}
}
TY  - JOUR
AU  - Wockel, Christoph
TI  - A generalization of Steenrod’s approximation theorem
JO  - Archivum mathematicum
PY  - 2009
SP  - 95
EP  - 104
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a2/
LA  - en
ID  - ARM_2009_45_2_a2
ER  - 
%0 Journal Article
%A Wockel, Christoph
%T A generalization of Steenrod’s approximation theorem
%J Archivum mathematicum
%D 2009
%P 95-104
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a2/
%G en
%F ARM_2009_45_2_a2
Wockel, Christoph. A generalization of Steenrod’s approximation theorem. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 95-104. http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a2/

[1] Bourbaki, N.: General topology. Elements of Mathematics (Berlin) (1998), Springer-Verlag, Berlin, translated from the French. | Zbl

[2] Dugundji, J.: Topology. Allyn and Bacon Inc., Boston, 1966. | MR | Zbl

[3] Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions. Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups (Bȩdlewo, 2000), vol. 55, Banach Center Publ., 43–59, Polish Acad. Sci., Warsaw, 2002. | MR | Zbl

[4] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups. Basic Theory and Main Examples, volume I, Springer-Verlag, 2009, in preparation.

[5] Hamilton, R. S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7 (1) (1982), 65–222. | DOI | MR | Zbl

[6] Hirsch, M. W.: Differential Topology. Springer-Verlag, New York, 1976. | MR | Zbl

[7] Keller, H. H.: Differential calculus in locally convex spaces. Lecture Notes in Math., vol. 417, Springer-Verlag, Berlin, 1974. | MR | Zbl

[8] Kriegl, A., Michor, P. W.: Smooth and continuous homotopies into convenient manifolds agree. unpublished preprint, 2002, available from http://www.mat.univie.ac.at/$\sim $michor/.

[9] Kriegl, A., Michor, P. W.: The Convenient Setting of Global Analysis. Math. Surveys Monogr., vol. 53, Amer. Math. Soc., 1997. | MR | Zbl

[10] Lee, J. M.: Introduction to smooth manifolds. Grad. Texts in Math., vol. 218, Springer-Verlag, New York, 2003. | DOI | MR

[11] Michor, P. W.: Manifolds of Differentiable Mappings. Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980, out of print, online available from http://www.mat.univie.ac.at/$\sim $michor/. | MR | Zbl

[12] Milnor, J.: Remarks on infinite-dimensional Lie groups. Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 1007–1057. | MR | Zbl

[13] Müller, C., Wockel, C.: Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group. Adv. Geom., to appear, 2009, arXiv:math/0604142.

[14] Naimpally, S. A.: Graph topology for function spaces. Trans. Amer. Math. Soc. 123 (1966), 267–272. | DOI | MR | Zbl

[15] Neeb, K.-H.: Central extensions of infinite-dimensional Lie groups. Ann. Inst. Fourier (Grenoble) 52 (5) (2002), 1365–1442. | DOI | MR | Zbl

[16] Steenrod, N.: The Topology of Fibre Bundles. Princeton Math. Ser. 14 (1951). | MR | Zbl

[17] Wockel, C.: Smooth extensions and spaces of smooth and holomorphic mappings. J. Geom. Symmetry Phys. 5 (2006), 118–126. | MR | Zbl