Keywords: automorphism group of a sporadic simple group; prime graph
@article{ARM_2009_45_2_a1,
author = {Khosravi, Behrooz},
title = {On the prime graphs of the automorphism groups of sporadic simple groups},
journal = {Archivum mathematicum},
pages = {83--94},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2591665},
zbl = {1204.20028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a1/}
}
Khosravi, Behrooz. On the prime graphs of the automorphism groups of sporadic simple groups. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 83-94. http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a1/
[1] Chen, Z. M., Shi, W. J.: On simple $C_{pp}$ groups. J. Southwest China Teachers Univ. 18 (3) (1993), 249–256.
[2] Chigira, N., Iiyori, N., Yamaki, H.: Non-abelian Sylow subgroups of finite groups of even order. Invent. Math. 139 (2000), 525–539. | DOI | MR | Zbl
[3] Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R.: Atlas of finite groups. Clarendon Press, Oxford, 1985. | Zbl
[4] Crescenzo, P.: A diophantine equation which arises in the theory of finite groups. Adv. Math. 17 (1975), 25–29. | DOI | MR | Zbl
[5] Gorenstein, D.: Finite groups. Harper and Row, New York, 1968. | MR | Zbl
[6] Gruenberg, K. W., Roggenkamp, K. W.: Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. London Math. Soc. (3) 31 (2) (1975), 149–166. | MR | Zbl
[7] Hagie, M.: The prime graph of a sporadic simple group. Comm. Algebra 31 (9) (2003), 4405–4424. | DOI | MR | Zbl
[8] Iranmanesh, A., Alavi, S. H., Khosravi, B.: A characterization of $PSL(3,q)$ where $q$ is an odd prime power. J. Pure Appl. Algebra 170 (2-3) (2002), 243–254. | DOI | MR | Zbl
[9] Janson, C., Lux, K., Parker, R. A., Wilson, R. A.: An atlas of Brauer characters. Clarendon Press, Oxford, 1995. | MR
[10] Khosravi, A., Khosravi, B.: A new characterization of almost sporadic groups. J. Algebra Appl. 1 (3) (2002), 267–279. | DOI | MR | Zbl
[11] Khosravi, B.: $n$-recognition by prime graph ofthe simple group $PSL(2,q)$. J Algebra Appl. 7 (6) (2008), 735–748. | DOI | MR
[12] Mazurov, V. D.: Characterization of finite groups by sets of orders of their elements. Algebra and Logic 36 (1) (1997), 23–32. | DOI | MR
[13] Mazurov, V. D.: Recognition of finite groups by a set of orders of their elements. Algebra and Logic 37 (6) (1998), 371–379. | DOI | MR | Zbl
[14] Praeger, C. E., Shi, W. J.: A characterization of some alternating and symmetric grops. 22 (5) (1994), 1507–1530. | MR
[15] Shi, W., Bi, J.: A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456 (1990), 171–180. | DOI | MR | Zbl
[16] Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265–284. | MR