On the prime graphs of the automorphism groups of sporadic simple groups
Archivum mathematicum, Tome 45 (2009) no. 2, pp. 83-94 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper as the main result, we determine finite groups with the same prime graph as the automorphism group of a sporadic simple group, except $J_2$.
In this paper as the main result, we determine finite groups with the same prime graph as the automorphism group of a sporadic simple group, except $J_2$.
Classification : 05C25, 20D05, 20D08, 20D45, 20D60
Keywords: automorphism group of a sporadic simple group; prime graph
@article{ARM_2009_45_2_a1,
     author = {Khosravi, Behrooz},
     title = {On the prime graphs of the automorphism groups of sporadic simple groups},
     journal = {Archivum mathematicum},
     pages = {83--94},
     year = {2009},
     volume = {45},
     number = {2},
     mrnumber = {2591665},
     zbl = {1204.20028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a1/}
}
TY  - JOUR
AU  - Khosravi, Behrooz
TI  - On the prime graphs of the automorphism groups of sporadic simple groups
JO  - Archivum mathematicum
PY  - 2009
SP  - 83
EP  - 94
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a1/
LA  - en
ID  - ARM_2009_45_2_a1
ER  - 
%0 Journal Article
%A Khosravi, Behrooz
%T On the prime graphs of the automorphism groups of sporadic simple groups
%J Archivum mathematicum
%D 2009
%P 83-94
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a1/
%G en
%F ARM_2009_45_2_a1
Khosravi, Behrooz. On the prime graphs of the automorphism groups of sporadic simple groups. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 83-94. http://geodesic.mathdoc.fr/item/ARM_2009_45_2_a1/

[1] Chen, Z. M., Shi, W. J.: On simple $C_{pp}$ groups. J. Southwest China Teachers Univ. 18 (3) (1993), 249–256.

[2] Chigira, N., Iiyori, N., Yamaki, H.: Non-abelian Sylow subgroups of finite groups of even order. Invent. Math. 139 (2000), 525–539. | DOI | MR | Zbl

[3] Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R.: Atlas of finite groups. Clarendon Press, Oxford, 1985. | Zbl

[4] Crescenzo, P.: A diophantine equation which arises in the theory of finite groups. Adv. Math. 17 (1975), 25–29. | DOI | MR | Zbl

[5] Gorenstein, D.: Finite groups. Harper and Row, New York, 1968. | MR | Zbl

[6] Gruenberg, K. W., Roggenkamp, K. W.: Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. London Math. Soc. (3) 31 (2) (1975), 149–166. | MR | Zbl

[7] Hagie, M.: The prime graph of a sporadic simple group. Comm. Algebra 31 (9) (2003), 4405–4424. | DOI | MR | Zbl

[8] Iranmanesh, A., Alavi, S. H., Khosravi, B.: A characterization of $PSL(3,q)$ where $q$ is an odd prime power. J. Pure Appl. Algebra 170 (2-3) (2002), 243–254. | DOI | MR | Zbl

[9] Janson, C., Lux, K., Parker, R. A., Wilson, R. A.: An atlas of Brauer characters. Clarendon Press, Oxford, 1995. | MR

[10] Khosravi, A., Khosravi, B.: A new characterization of almost sporadic groups. J. Algebra Appl. 1 (3) (2002), 267–279. | DOI | MR | Zbl

[11] Khosravi, B.: $n$-recognition by prime graph ofthe simple group $PSL(2,q)$. J Algebra Appl. 7 (6) (2008), 735–748. | DOI | MR

[12] Mazurov, V. D.: Characterization of finite groups by sets of orders of their elements. Algebra and Logic 36 (1) (1997), 23–32. | DOI | MR

[13] Mazurov, V. D.: Recognition of finite groups by a set of orders of their elements. Algebra and Logic 37 (6) (1998), 371–379. | DOI | MR | Zbl

[14] Praeger, C. E., Shi, W. J.: A characterization of some alternating and symmetric grops. 22 (5) (1994), 1507–1530. | MR

[15] Shi, W., Bi, J.: A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456 (1990), 171–180. | DOI | MR | Zbl

[16] Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265–284. | MR